Loading…

Intrusion detection in connected cars

Automobiles are becoming increasingly connected and therefore are vulnerable to cyber attacks. Intrusion detection systems are a well established technique in cyber security and are now being deployed to detect attacks on cars by filtering the data streams which are exchanged by the car and the outs...

Full description

Saved in:
Bibliographic Details
Main Authors: Haas, Roland E., Moller, Dietmar P. F., Bansal, Prateek, Ghosh, Rahul, Bhat, Srikrishna S.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 519
container_issue
container_start_page 516
container_title
container_volume
creator Haas, Roland E.
Moller, Dietmar P. F.
Bansal, Prateek
Ghosh, Rahul
Bhat, Srikrishna S.
description Automobiles are becoming increasingly connected and therefore are vulnerable to cyber attacks. Intrusion detection systems are a well established technique in cyber security and are now being deployed to detect attacks on cars by filtering the data streams which are exchanged by the car and the outside world as well within the automotive bus systems. The paper gives a brief overview of intrusion detection systems and discusses some of the major cyber security threats arising in the world of connected cars. We also show how intrusion detection systems can be implemented by artificial neural networks.
doi_str_mv 10.1109/EIT.2017.8053416
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8053416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8053416</ieee_id><sourcerecordid>8053416</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5df269154321c0101308d4d37767455556bc4f7759450f30cbf693f48a52b8073</originalsourceid><addsrcrecordid>eNotTz1LA0EUXIWAIV4v2Fxjeed7-_azlBD1IGCT1OFuP2BFN3J7Fv57V8w086aYmTeM3SH0iGAfd8Oh54C6NyBJoLpijdUGJVgQWmm6ZmuOUnRAmm5YU8o7AFSjstys2cOQl_m7pHNufViCW_6ulFt3zrmq4Fs3zuWWreL4UUJz4Q07Pu8O29du__YybJ_2XUItl076yJWtZcTR1Q4kMF540vUPISvU5ETUWlohIRK4KSpLUZhR8smApg27_89NIYTT15w-x_nndBlGvyumPj0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Intrusion detection in connected cars</title><source>IEEE Xplore All Conference Series</source><creator>Haas, Roland E. ; Moller, Dietmar P. F. ; Bansal, Prateek ; Ghosh, Rahul ; Bhat, Srikrishna S.</creator><creatorcontrib>Haas, Roland E. ; Moller, Dietmar P. F. ; Bansal, Prateek ; Ghosh, Rahul ; Bhat, Srikrishna S.</creatorcontrib><description>Automobiles are becoming increasingly connected and therefore are vulnerable to cyber attacks. Intrusion detection systems are a well established technique in cyber security and are now being deployed to detect attacks on cars by filtering the data streams which are exchanged by the car and the outside world as well within the automotive bus systems. The paper gives a brief overview of intrusion detection systems and discusses some of the major cyber security threats arising in the world of connected cars. We also show how intrusion detection systems can be implemented by artificial neural networks.</description><identifier>EISSN: 2154-0373</identifier><identifier>EISBN: 9781509047673</identifier><identifier>EISBN: 1509047670</identifier><identifier>DOI: 10.1109/EIT.2017.8053416</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automobiles ; Computer crime ; Delays ; Intrusion detection ; Neurons</subject><ispartof>2017 IEEE International Conference on Electro Information Technology (EIT), 2017, p.516-519</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8053416$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8053416$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haas, Roland E.</creatorcontrib><creatorcontrib>Moller, Dietmar P. F.</creatorcontrib><creatorcontrib>Bansal, Prateek</creatorcontrib><creatorcontrib>Ghosh, Rahul</creatorcontrib><creatorcontrib>Bhat, Srikrishna S.</creatorcontrib><title>Intrusion detection in connected cars</title><title>2017 IEEE International Conference on Electro Information Technology (EIT)</title><addtitle>EIT</addtitle><description>Automobiles are becoming increasingly connected and therefore are vulnerable to cyber attacks. Intrusion detection systems are a well established technique in cyber security and are now being deployed to detect attacks on cars by filtering the data streams which are exchanged by the car and the outside world as well within the automotive bus systems. The paper gives a brief overview of intrusion detection systems and discusses some of the major cyber security threats arising in the world of connected cars. We also show how intrusion detection systems can be implemented by artificial neural networks.</description><subject>Automobiles</subject><subject>Computer crime</subject><subject>Delays</subject><subject>Intrusion detection</subject><subject>Neurons</subject><issn>2154-0373</issn><isbn>9781509047673</isbn><isbn>1509047670</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotTz1LA0EUXIWAIV4v2Fxjeed7-_azlBD1IGCT1OFuP2BFN3J7Fv57V8w086aYmTeM3SH0iGAfd8Oh54C6NyBJoLpijdUGJVgQWmm6ZmuOUnRAmm5YU8o7AFSjstys2cOQl_m7pHNufViCW_6ulFt3zrmq4Fs3zuWWreL4UUJz4Q07Pu8O29du__YybJ_2XUItl076yJWtZcTR1Q4kMF540vUPISvU5ETUWlohIRK4KSpLUZhR8smApg27_89NIYTT15w-x_nndBlGvyumPj0</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Haas, Roland E.</creator><creator>Moller, Dietmar P. F.</creator><creator>Bansal, Prateek</creator><creator>Ghosh, Rahul</creator><creator>Bhat, Srikrishna S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201705</creationdate><title>Intrusion detection in connected cars</title><author>Haas, Roland E. ; Moller, Dietmar P. F. ; Bansal, Prateek ; Ghosh, Rahul ; Bhat, Srikrishna S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5df269154321c0101308d4d37767455556bc4f7759450f30cbf693f48a52b8073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automobiles</topic><topic>Computer crime</topic><topic>Delays</topic><topic>Intrusion detection</topic><topic>Neurons</topic><toplevel>online_resources</toplevel><creatorcontrib>Haas, Roland E.</creatorcontrib><creatorcontrib>Moller, Dietmar P. F.</creatorcontrib><creatorcontrib>Bansal, Prateek</creatorcontrib><creatorcontrib>Ghosh, Rahul</creatorcontrib><creatorcontrib>Bhat, Srikrishna S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haas, Roland E.</au><au>Moller, Dietmar P. F.</au><au>Bansal, Prateek</au><au>Ghosh, Rahul</au><au>Bhat, Srikrishna S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Intrusion detection in connected cars</atitle><btitle>2017 IEEE International Conference on Electro Information Technology (EIT)</btitle><stitle>EIT</stitle><date>2017-05</date><risdate>2017</risdate><spage>516</spage><epage>519</epage><pages>516-519</pages><eissn>2154-0373</eissn><eisbn>9781509047673</eisbn><eisbn>1509047670</eisbn><abstract>Automobiles are becoming increasingly connected and therefore are vulnerable to cyber attacks. Intrusion detection systems are a well established technique in cyber security and are now being deployed to detect attacks on cars by filtering the data streams which are exchanged by the car and the outside world as well within the automotive bus systems. The paper gives a brief overview of intrusion detection systems and discusses some of the major cyber security threats arising in the world of connected cars. We also show how intrusion detection systems can be implemented by artificial neural networks.</abstract><pub>IEEE</pub><doi>10.1109/EIT.2017.8053416</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2154-0373
ispartof 2017 IEEE International Conference on Electro Information Technology (EIT), 2017, p.516-519
issn 2154-0373
language eng
recordid cdi_ieee_primary_8053416
source IEEE Xplore All Conference Series
subjects Automobiles
Computer crime
Delays
Intrusion detection
Neurons
title Intrusion detection in connected cars
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A18%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Intrusion%20detection%20in%20connected%20cars&rft.btitle=2017%20IEEE%20International%20Conference%20on%20Electro%20Information%20Technology%20(EIT)&rft.au=Haas,%20Roland%20E.&rft.date=2017-05&rft.spage=516&rft.epage=519&rft.pages=516-519&rft.eissn=2154-0373&rft_id=info:doi/10.1109/EIT.2017.8053416&rft.eisbn=9781509047673&rft.eisbn_list=1509047670&rft_dat=%3Cieee_CHZPO%3E8053416%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-5df269154321c0101308d4d37767455556bc4f7759450f30cbf693f48a52b8073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8053416&rfr_iscdi=true