Loading…

Assessing Texture Descriptors for Seismic Image Retrieval

Much work has been done on the assessment of texture descriptors for image retrieval in many domains. In this work, we evaluate the accuracy and performance of three wellknown texture descriptors - Gabor Filters, GLCM, and LBP - for seismic image retrieval. These subsurface images pose challenges ye...

Full description

Saved in:
Bibliographic Details
Main Authors: Britto Mattos, Andrea, Ferreira, Rodrigo S., Da Gama e Silva, Reinaldo M., Riva, Mateus, Brazil, Emilio Vital
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 299
container_issue
container_start_page 292
container_title
container_volume
creator Britto Mattos, Andrea
Ferreira, Rodrigo S.
Da Gama e Silva, Reinaldo M.
Riva, Mateus
Brazil, Emilio Vital
description Much work has been done on the assessment of texture descriptors for image retrieval in many domains. In this work, we evaluate the accuracy and performance of three wellknown texture descriptors - Gabor Filters, GLCM, and LBP - for seismic image retrieval. These subsurface images pose challenges yet not thoroughly investigated in previous works, which are addressed and evaluated in our experiments. We asked for domain experts to annotate two seismic cubes, Penobscot 3D and Netherlands F3, and used them to evaluate texture descriptors, corresponding parameters, and similarity metrics with the potential to retrieve visually similar regions of the considered datasets. While GLCM is used in the vast majority of works in this area, our findings indicate that LBP has the potential to produce satisfying results with lower computational cost.
doi_str_mv 10.1109/SIBGRAPI.2017.45
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8097325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8097325</ieee_id><sourcerecordid>8097325</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b98704903c37672ac2ba01e09137a071e2904a4854d169372b931acc7a55114c3</originalsourceid><addsrcrecordid>eNotzE1PAjEQANBqYiIidxMv_QOLnX7sdI4rCm5CogE8k24dSA0rpF2N_nsPenq3J8QNqCmAort1e79YNS_tVCvAqXVnYkLowRlfaw1kzsVIG8TKWagvxVUp70oBUe1HgppSuJT0sZcb_h4-M8sHLjGn03DMRe6OWa45lT5F2fZhz3LFQ078FQ7X4mIXDoUn_47F6_xxM3uqls-LdtYsqwTohqojj8qSMtFgjTpE3QUFrAgMBoXAmpQN1jv7BjUZ1B0ZCDFicA7ARjMWt39vYubtKac-5J-tV4RGO_MLcGBF0w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Assessing Texture Descriptors for Seismic Image Retrieval</title><source>IEEE Xplore All Conference Series</source><creator>Britto Mattos, Andrea ; Ferreira, Rodrigo S. ; Da Gama e Silva, Reinaldo M. ; Riva, Mateus ; Brazil, Emilio Vital</creator><creatorcontrib>Britto Mattos, Andrea ; Ferreira, Rodrigo S. ; Da Gama e Silva, Reinaldo M. ; Riva, Mateus ; Brazil, Emilio Vital</creatorcontrib><description>Much work has been done on the assessment of texture descriptors for image retrieval in many domains. In this work, we evaluate the accuracy and performance of three wellknown texture descriptors - Gabor Filters, GLCM, and LBP - for seismic image retrieval. These subsurface images pose challenges yet not thoroughly investigated in previous works, which are addressed and evaluated in our experiments. We asked for domain experts to annotate two seismic cubes, Penobscot 3D and Netherlands F3, and used them to evaluate texture descriptors, corresponding parameters, and similarity metrics with the potential to retrieve visually similar regions of the considered datasets. While GLCM is used in the vast majority of works in this area, our findings indicate that LBP has the potential to produce satisfying results with lower computational cost.</description><identifier>EISSN: 2377-5416</identifier><identifier>EISBN: 9781538622193</identifier><identifier>EISBN: 153862219X</identifier><identifier>DOI: 10.1109/SIBGRAPI.2017.45</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Entropy ; Feature extraction ; Gabor filters ; Image retrieval ; Three-dimensional displays ; Visualization</subject><ispartof>2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), 2017, p.292-299</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8097325$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8097325$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Britto Mattos, Andrea</creatorcontrib><creatorcontrib>Ferreira, Rodrigo S.</creatorcontrib><creatorcontrib>Da Gama e Silva, Reinaldo M.</creatorcontrib><creatorcontrib>Riva, Mateus</creatorcontrib><creatorcontrib>Brazil, Emilio Vital</creatorcontrib><title>Assessing Texture Descriptors for Seismic Image Retrieval</title><title>2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)</title><addtitle>SIBGRA</addtitle><description>Much work has been done on the assessment of texture descriptors for image retrieval in many domains. In this work, we evaluate the accuracy and performance of three wellknown texture descriptors - Gabor Filters, GLCM, and LBP - for seismic image retrieval. These subsurface images pose challenges yet not thoroughly investigated in previous works, which are addressed and evaluated in our experiments. We asked for domain experts to annotate two seismic cubes, Penobscot 3D and Netherlands F3, and used them to evaluate texture descriptors, corresponding parameters, and similarity metrics with the potential to retrieve visually similar regions of the considered datasets. While GLCM is used in the vast majority of works in this area, our findings indicate that LBP has the potential to produce satisfying results with lower computational cost.</description><subject>Entropy</subject><subject>Feature extraction</subject><subject>Gabor filters</subject><subject>Image retrieval</subject><subject>Three-dimensional displays</subject><subject>Visualization</subject><issn>2377-5416</issn><isbn>9781538622193</isbn><isbn>153862219X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzE1PAjEQANBqYiIidxMv_QOLnX7sdI4rCm5CogE8k24dSA0rpF2N_nsPenq3J8QNqCmAort1e79YNS_tVCvAqXVnYkLowRlfaw1kzsVIG8TKWagvxVUp70oBUe1HgppSuJT0sZcb_h4-M8sHLjGn03DMRe6OWa45lT5F2fZhz3LFQ078FQ7X4mIXDoUn_47F6_xxM3uqls-LdtYsqwTohqojj8qSMtFgjTpE3QUFrAgMBoXAmpQN1jv7BjUZ1B0ZCDFicA7ARjMWt39vYubtKac-5J-tV4RGO_MLcGBF0w</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Britto Mattos, Andrea</creator><creator>Ferreira, Rodrigo S.</creator><creator>Da Gama e Silva, Reinaldo M.</creator><creator>Riva, Mateus</creator><creator>Brazil, Emilio Vital</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201710</creationdate><title>Assessing Texture Descriptors for Seismic Image Retrieval</title><author>Britto Mattos, Andrea ; Ferreira, Rodrigo S. ; Da Gama e Silva, Reinaldo M. ; Riva, Mateus ; Brazil, Emilio Vital</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b98704903c37672ac2ba01e09137a071e2904a4854d169372b931acc7a55114c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Entropy</topic><topic>Feature extraction</topic><topic>Gabor filters</topic><topic>Image retrieval</topic><topic>Three-dimensional displays</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Britto Mattos, Andrea</creatorcontrib><creatorcontrib>Ferreira, Rodrigo S.</creatorcontrib><creatorcontrib>Da Gama e Silva, Reinaldo M.</creatorcontrib><creatorcontrib>Riva, Mateus</creatorcontrib><creatorcontrib>Brazil, Emilio Vital</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Britto Mattos, Andrea</au><au>Ferreira, Rodrigo S.</au><au>Da Gama e Silva, Reinaldo M.</au><au>Riva, Mateus</au><au>Brazil, Emilio Vital</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Assessing Texture Descriptors for Seismic Image Retrieval</atitle><btitle>2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)</btitle><stitle>SIBGRA</stitle><date>2017-10</date><risdate>2017</risdate><spage>292</spage><epage>299</epage><pages>292-299</pages><eissn>2377-5416</eissn><eisbn>9781538622193</eisbn><eisbn>153862219X</eisbn><coden>IEEPAD</coden><abstract>Much work has been done on the assessment of texture descriptors for image retrieval in many domains. In this work, we evaluate the accuracy and performance of three wellknown texture descriptors - Gabor Filters, GLCM, and LBP - for seismic image retrieval. These subsurface images pose challenges yet not thoroughly investigated in previous works, which are addressed and evaluated in our experiments. We asked for domain experts to annotate two seismic cubes, Penobscot 3D and Netherlands F3, and used them to evaluate texture descriptors, corresponding parameters, and similarity metrics with the potential to retrieve visually similar regions of the considered datasets. While GLCM is used in the vast majority of works in this area, our findings indicate that LBP has the potential to produce satisfying results with lower computational cost.</abstract><pub>IEEE</pub><doi>10.1109/SIBGRAPI.2017.45</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2377-5416
ispartof 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), 2017, p.292-299
issn 2377-5416
language eng
recordid cdi_ieee_primary_8097325
source IEEE Xplore All Conference Series
subjects Entropy
Feature extraction
Gabor filters
Image retrieval
Three-dimensional displays
Visualization
title Assessing Texture Descriptors for Seismic Image Retrieval
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Assessing%20Texture%20Descriptors%20for%20Seismic%20Image%20Retrieval&rft.btitle=2017%2030th%20SIBGRAPI%20Conference%20on%20Graphics,%20Patterns%20and%20Images%20(SIBGRAPI)&rft.au=Britto%20Mattos,%20Andrea&rft.date=2017-10&rft.spage=292&rft.epage=299&rft.pages=292-299&rft.eissn=2377-5416&rft.coden=IEEPAD&rft_id=info:doi/10.1109/SIBGRAPI.2017.45&rft.eisbn=9781538622193&rft.eisbn_list=153862219X&rft_dat=%3Cieee_CHZPO%3E8097325%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-b98704903c37672ac2ba01e09137a071e2904a4854d169372b931acc7a55114c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8097325&rfr_iscdi=true