Loading…
Assessing Texture Descriptors for Seismic Image Retrieval
Much work has been done on the assessment of texture descriptors for image retrieval in many domains. In this work, we evaluate the accuracy and performance of three wellknown texture descriptors - Gabor Filters, GLCM, and LBP - for seismic image retrieval. These subsurface images pose challenges ye...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 299 |
container_issue | |
container_start_page | 292 |
container_title | |
container_volume | |
creator | Britto Mattos, Andrea Ferreira, Rodrigo S. Da Gama e Silva, Reinaldo M. Riva, Mateus Brazil, Emilio Vital |
description | Much work has been done on the assessment of texture descriptors for image retrieval in many domains. In this work, we evaluate the accuracy and performance of three wellknown texture descriptors - Gabor Filters, GLCM, and LBP - for seismic image retrieval. These subsurface images pose challenges yet not thoroughly investigated in previous works, which are addressed and evaluated in our experiments. We asked for domain experts to annotate two seismic cubes, Penobscot 3D and Netherlands F3, and used them to evaluate texture descriptors, corresponding parameters, and similarity metrics with the potential to retrieve visually similar regions of the considered datasets. While GLCM is used in the vast majority of works in this area, our findings indicate that LBP has the potential to produce satisfying results with lower computational cost. |
doi_str_mv | 10.1109/SIBGRAPI.2017.45 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8097325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8097325</ieee_id><sourcerecordid>8097325</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b98704903c37672ac2ba01e09137a071e2904a4854d169372b931acc7a55114c3</originalsourceid><addsrcrecordid>eNotzE1PAjEQANBqYiIidxMv_QOLnX7sdI4rCm5CogE8k24dSA0rpF2N_nsPenq3J8QNqCmAort1e79YNS_tVCvAqXVnYkLowRlfaw1kzsVIG8TKWagvxVUp70oBUe1HgppSuJT0sZcb_h4-M8sHLjGn03DMRe6OWa45lT5F2fZhz3LFQ078FQ7X4mIXDoUn_47F6_xxM3uqls-LdtYsqwTohqojj8qSMtFgjTpE3QUFrAgMBoXAmpQN1jv7BjUZ1B0ZCDFicA7ARjMWt39vYubtKac-5J-tV4RGO_MLcGBF0w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Assessing Texture Descriptors for Seismic Image Retrieval</title><source>IEEE Xplore All Conference Series</source><creator>Britto Mattos, Andrea ; Ferreira, Rodrigo S. ; Da Gama e Silva, Reinaldo M. ; Riva, Mateus ; Brazil, Emilio Vital</creator><creatorcontrib>Britto Mattos, Andrea ; Ferreira, Rodrigo S. ; Da Gama e Silva, Reinaldo M. ; Riva, Mateus ; Brazil, Emilio Vital</creatorcontrib><description>Much work has been done on the assessment of texture descriptors for image retrieval in many domains. In this work, we evaluate the accuracy and performance of three wellknown texture descriptors - Gabor Filters, GLCM, and LBP - for seismic image retrieval. These subsurface images pose challenges yet not thoroughly investigated in previous works, which are addressed and evaluated in our experiments. We asked for domain experts to annotate two seismic cubes, Penobscot 3D and Netherlands F3, and used them to evaluate texture descriptors, corresponding parameters, and similarity metrics with the potential to retrieve visually similar regions of the considered datasets. While GLCM is used in the vast majority of works in this area, our findings indicate that LBP has the potential to produce satisfying results with lower computational cost.</description><identifier>EISSN: 2377-5416</identifier><identifier>EISBN: 9781538622193</identifier><identifier>EISBN: 153862219X</identifier><identifier>DOI: 10.1109/SIBGRAPI.2017.45</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Entropy ; Feature extraction ; Gabor filters ; Image retrieval ; Three-dimensional displays ; Visualization</subject><ispartof>2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), 2017, p.292-299</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8097325$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8097325$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Britto Mattos, Andrea</creatorcontrib><creatorcontrib>Ferreira, Rodrigo S.</creatorcontrib><creatorcontrib>Da Gama e Silva, Reinaldo M.</creatorcontrib><creatorcontrib>Riva, Mateus</creatorcontrib><creatorcontrib>Brazil, Emilio Vital</creatorcontrib><title>Assessing Texture Descriptors for Seismic Image Retrieval</title><title>2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)</title><addtitle>SIBGRA</addtitle><description>Much work has been done on the assessment of texture descriptors for image retrieval in many domains. In this work, we evaluate the accuracy and performance of three wellknown texture descriptors - Gabor Filters, GLCM, and LBP - for seismic image retrieval. These subsurface images pose challenges yet not thoroughly investigated in previous works, which are addressed and evaluated in our experiments. We asked for domain experts to annotate two seismic cubes, Penobscot 3D and Netherlands F3, and used them to evaluate texture descriptors, corresponding parameters, and similarity metrics with the potential to retrieve visually similar regions of the considered datasets. While GLCM is used in the vast majority of works in this area, our findings indicate that LBP has the potential to produce satisfying results with lower computational cost.</description><subject>Entropy</subject><subject>Feature extraction</subject><subject>Gabor filters</subject><subject>Image retrieval</subject><subject>Three-dimensional displays</subject><subject>Visualization</subject><issn>2377-5416</issn><isbn>9781538622193</isbn><isbn>153862219X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzE1PAjEQANBqYiIidxMv_QOLnX7sdI4rCm5CogE8k24dSA0rpF2N_nsPenq3J8QNqCmAort1e79YNS_tVCvAqXVnYkLowRlfaw1kzsVIG8TKWagvxVUp70oBUe1HgppSuJT0sZcb_h4-M8sHLjGn03DMRe6OWa45lT5F2fZhz3LFQ078FQ7X4mIXDoUn_47F6_xxM3uqls-LdtYsqwTohqojj8qSMtFgjTpE3QUFrAgMBoXAmpQN1jv7BjUZ1B0ZCDFicA7ARjMWt39vYubtKac-5J-tV4RGO_MLcGBF0w</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Britto Mattos, Andrea</creator><creator>Ferreira, Rodrigo S.</creator><creator>Da Gama e Silva, Reinaldo M.</creator><creator>Riva, Mateus</creator><creator>Brazil, Emilio Vital</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201710</creationdate><title>Assessing Texture Descriptors for Seismic Image Retrieval</title><author>Britto Mattos, Andrea ; Ferreira, Rodrigo S. ; Da Gama e Silva, Reinaldo M. ; Riva, Mateus ; Brazil, Emilio Vital</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b98704903c37672ac2ba01e09137a071e2904a4854d169372b931acc7a55114c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Entropy</topic><topic>Feature extraction</topic><topic>Gabor filters</topic><topic>Image retrieval</topic><topic>Three-dimensional displays</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Britto Mattos, Andrea</creatorcontrib><creatorcontrib>Ferreira, Rodrigo S.</creatorcontrib><creatorcontrib>Da Gama e Silva, Reinaldo M.</creatorcontrib><creatorcontrib>Riva, Mateus</creatorcontrib><creatorcontrib>Brazil, Emilio Vital</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Britto Mattos, Andrea</au><au>Ferreira, Rodrigo S.</au><au>Da Gama e Silva, Reinaldo M.</au><au>Riva, Mateus</au><au>Brazil, Emilio Vital</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Assessing Texture Descriptors for Seismic Image Retrieval</atitle><btitle>2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)</btitle><stitle>SIBGRA</stitle><date>2017-10</date><risdate>2017</risdate><spage>292</spage><epage>299</epage><pages>292-299</pages><eissn>2377-5416</eissn><eisbn>9781538622193</eisbn><eisbn>153862219X</eisbn><coden>IEEPAD</coden><abstract>Much work has been done on the assessment of texture descriptors for image retrieval in many domains. In this work, we evaluate the accuracy and performance of three wellknown texture descriptors - Gabor Filters, GLCM, and LBP - for seismic image retrieval. These subsurface images pose challenges yet not thoroughly investigated in previous works, which are addressed and evaluated in our experiments. We asked for domain experts to annotate two seismic cubes, Penobscot 3D and Netherlands F3, and used them to evaluate texture descriptors, corresponding parameters, and similarity metrics with the potential to retrieve visually similar regions of the considered datasets. While GLCM is used in the vast majority of works in this area, our findings indicate that LBP has the potential to produce satisfying results with lower computational cost.</abstract><pub>IEEE</pub><doi>10.1109/SIBGRAPI.2017.45</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2377-5416 |
ispartof | 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), 2017, p.292-299 |
issn | 2377-5416 |
language | eng |
recordid | cdi_ieee_primary_8097325 |
source | IEEE Xplore All Conference Series |
subjects | Entropy Feature extraction Gabor filters Image retrieval Three-dimensional displays Visualization |
title | Assessing Texture Descriptors for Seismic Image Retrieval |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Assessing%20Texture%20Descriptors%20for%20Seismic%20Image%20Retrieval&rft.btitle=2017%2030th%20SIBGRAPI%20Conference%20on%20Graphics,%20Patterns%20and%20Images%20(SIBGRAPI)&rft.au=Britto%20Mattos,%20Andrea&rft.date=2017-10&rft.spage=292&rft.epage=299&rft.pages=292-299&rft.eissn=2377-5416&rft.coden=IEEPAD&rft_id=info:doi/10.1109/SIBGRAPI.2017.45&rft.eisbn=9781538622193&rft.eisbn_list=153862219X&rft_dat=%3Cieee_CHZPO%3E8097325%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-b98704903c37672ac2ba01e09137a071e2904a4854d169372b931acc7a55114c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8097325&rfr_iscdi=true |