Loading…
0.3-THz SiGe-Based High-Efficiency Push-Push VCOs With > 1-mW Peak Output Power Employing Common-Mode Impedance Enhancement
We present a novel method of maximizing the output power and efficiency of millimeter-wave and terahertz signal sources, which are based on the push-push topology. In this method, the common-mode impedance of a differential Colpitts oscillator operating in the odd mode is maximized by introducing a...
Saved in:
Published in: | IEEE transactions on microwave theory and techniques 2018-03, Vol.66 (3), p.1384-1398 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-7a1de01ff8ba260227c2beba96d5918d12f82093bf0d186ab282567ec51b80d73 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-7a1de01ff8ba260227c2beba96d5918d12f82093bf0d186ab282567ec51b80d73 |
container_end_page | 1398 |
container_issue | 3 |
container_start_page | 1384 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 66 |
creator | Ahmed, Faisal Furqan, Muhammad Heinemann, Bernd Stelzer, Andreas |
description | We present a novel method of maximizing the output power and efficiency of millimeter-wave and terahertz signal sources, which are based on the push-push topology. In this method, the common-mode impedance of a differential Colpitts oscillator operating in the odd mode is maximized by introducing a fixed-valued capacitor ( C_{r} ) at the common-base node. This capacitor is designed to introduce a common-mode parallel resonance at the desired second harmonic, boosting the common-mode voltage swing and subsequently its output power. The proposed method is analyzed using a high-frequency even-mode \pi -model. Analytical expressions of input impedance are derived and are used for calculating the common-mode resonance frequency and the required value of C_{r} . Two 0.3-THz voltage-controlled oscillators (VCOs) are implemented in a 130-nm SiGe BiCMOS process. It is shown that by using the proposed technique, the output power is improved by more than 6 dB, as compared with the conventional approaches. The implemented VCOs work from 292 to 318 GHz and 305 to 327 GHz, delivering a peak output power of 0.6 and 0.2 dBm, with a dc-to-RF efficiency of 0.8% and 0.9%, and can achieve a phase noise of −108 and −105 dBc/Hz at 10-MHz offset, respectively. As compared with the prior state-of-the-art Si-based tunable signal sources and arrays working above 270 GHz, this paper shows the lowest phase noise and the best figure-of-merit, while having an excellent output power, a tuning range, and a dc-to-RF efficiency. |
doi_str_mv | 10.1109/TMTT.2017.2767593 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8100752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8100752</ieee_id><sourcerecordid>2174488882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7a1de01ff8ba260227c2beba96d5918d12f82093bf0d186ab282567ec51b80d73</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxRdRsFY_gHhZ8Lx1ZtNkNxdBS2wFSwtGPYZNMrGp5o_ZBKl-eRNanMM8Bt6bBz_GLhEmiODfhMswnEhANZHKU67vHLERuq4SvqfgmI0AUAt_quGUnVm77c-pC3rEfmHiiHDxw5_zOYl7Yynli_x9I4Isy5OcymTH153diGHx19nK8re83fBbjqJ442syH3zVtXXX8nX1TQ0Pivqz2uXlO59VRVGVYlmlxB-LmlJTJsSDcjNoQWV7zk4y82np4qBj9vIQhLOFeFrNH2d3TyKRvtMKZTAlwCzTsZEeSKkSGVNsfC91fdQpykxL8J04gxS1Z2KppespSlyMNaTKGbPr_d-6qb46sm20rbqm7CsjiWo61f3I3oV7V9JU1jaURXWTF6bZRQjRwDgaGEcD4-jAuM9c7TM5Ef37NQIoVzp_sAl2Qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174488882</pqid></control><display><type>article</type><title>0.3-THz SiGe-Based High-Efficiency Push-Push VCOs With > 1-mW Peak Output Power Employing Common-Mode Impedance Enhancement</title><source>IEEE Xplore (Online service)</source><creator>Ahmed, Faisal ; Furqan, Muhammad ; Heinemann, Bernd ; Stelzer, Andreas</creator><creatorcontrib>Ahmed, Faisal ; Furqan, Muhammad ; Heinemann, Bernd ; Stelzer, Andreas</creatorcontrib><description><![CDATA[We present a novel method of maximizing the output power and efficiency of millimeter-wave and terahertz signal sources, which are based on the push-push topology. In this method, the common-mode impedance of a differential Colpitts oscillator operating in the odd mode is maximized by introducing a fixed-valued capacitor (<inline-formula> <tex-math notation="LaTeX">C_{r} </tex-math></inline-formula>) at the common-base node. This capacitor is designed to introduce a common-mode parallel resonance at the desired second harmonic, boosting the common-mode voltage swing and subsequently its output power. The proposed method is analyzed using a high-frequency even-mode <inline-formula> <tex-math notation="LaTeX">\pi </tex-math></inline-formula>-model. Analytical expressions of input impedance are derived and are used for calculating the common-mode resonance frequency and the required value of <inline-formula> <tex-math notation="LaTeX">C_{r} </tex-math></inline-formula>. Two 0.3-THz voltage-controlled oscillators (VCOs) are implemented in a 130-nm SiGe BiCMOS process. It is shown that by using the proposed technique, the output power is improved by more than 6 dB, as compared with the conventional approaches. The implemented VCOs work from 292 to 318 GHz and 305 to 327 GHz, delivering a peak output power of 0.6 and 0.2 dBm, with a dc-to-RF efficiency of 0.8% and 0.9%, and can achieve a phase noise of −108 and −105 dBc/Hz at 10-MHz offset, respectively. As compared with the prior state-of-the-art Si-based tunable signal sources and arrays working above 270 GHz, this paper shows the lowest phase noise and the best figure-of-merit, while having an excellent output power, a tuning range, and a dc-to-RF efficiency.]]></description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2017.2767593</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitors ; Efficiency ; Electric potential ; Electrons ; Frequency analysis ; Harmonic analysis ; Heterojunction bipolar transistor (HBT) ; Impedance ; Input impedance ; Mathematical analysis ; millimeter wave (mm-wave) ; Millimeter waves ; Oscillators ; Power efficiency ; Power generation ; Power system harmonics ; Resonant frequency ; SiGe BiCMOS ; Silicon germanides ; State of the art ; terahertz (THz) ; Tuning ; Voltage controlled oscillators ; voltage-controlled oscillators (VCOs) ; wide tuning range</subject><ispartof>IEEE transactions on microwave theory and techniques, 2018-03, Vol.66 (3), p.1384-1398</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7a1de01ff8ba260227c2beba96d5918d12f82093bf0d186ab282567ec51b80d73</citedby><cites>FETCH-LOGICAL-c293t-7a1de01ff8ba260227c2beba96d5918d12f82093bf0d186ab282567ec51b80d73</cites><orcidid>0000-0002-8935-7756 ; 0000-0002-0053-0170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8100752$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Ahmed, Faisal</creatorcontrib><creatorcontrib>Furqan, Muhammad</creatorcontrib><creatorcontrib>Heinemann, Bernd</creatorcontrib><creatorcontrib>Stelzer, Andreas</creatorcontrib><title>0.3-THz SiGe-Based High-Efficiency Push-Push VCOs With > 1-mW Peak Output Power Employing Common-Mode Impedance Enhancement</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description><![CDATA[We present a novel method of maximizing the output power and efficiency of millimeter-wave and terahertz signal sources, which are based on the push-push topology. In this method, the common-mode impedance of a differential Colpitts oscillator operating in the odd mode is maximized by introducing a fixed-valued capacitor (<inline-formula> <tex-math notation="LaTeX">C_{r} </tex-math></inline-formula>) at the common-base node. This capacitor is designed to introduce a common-mode parallel resonance at the desired second harmonic, boosting the common-mode voltage swing and subsequently its output power. The proposed method is analyzed using a high-frequency even-mode <inline-formula> <tex-math notation="LaTeX">\pi </tex-math></inline-formula>-model. Analytical expressions of input impedance are derived and are used for calculating the common-mode resonance frequency and the required value of <inline-formula> <tex-math notation="LaTeX">C_{r} </tex-math></inline-formula>. Two 0.3-THz voltage-controlled oscillators (VCOs) are implemented in a 130-nm SiGe BiCMOS process. It is shown that by using the proposed technique, the output power is improved by more than 6 dB, as compared with the conventional approaches. The implemented VCOs work from 292 to 318 GHz and 305 to 327 GHz, delivering a peak output power of 0.6 and 0.2 dBm, with a dc-to-RF efficiency of 0.8% and 0.9%, and can achieve a phase noise of −108 and −105 dBc/Hz at 10-MHz offset, respectively. As compared with the prior state-of-the-art Si-based tunable signal sources and arrays working above 270 GHz, this paper shows the lowest phase noise and the best figure-of-merit, while having an excellent output power, a tuning range, and a dc-to-RF efficiency.]]></description><subject>Capacitors</subject><subject>Efficiency</subject><subject>Electric potential</subject><subject>Electrons</subject><subject>Frequency analysis</subject><subject>Harmonic analysis</subject><subject>Heterojunction bipolar transistor (HBT)</subject><subject>Impedance</subject><subject>Input impedance</subject><subject>Mathematical analysis</subject><subject>millimeter wave (mm-wave)</subject><subject>Millimeter waves</subject><subject>Oscillators</subject><subject>Power efficiency</subject><subject>Power generation</subject><subject>Power system harmonics</subject><subject>Resonant frequency</subject><subject>SiGe BiCMOS</subject><subject>Silicon germanides</subject><subject>State of the art</subject><subject>terahertz (THz)</subject><subject>Tuning</subject><subject>Voltage controlled oscillators</subject><subject>voltage-controlled oscillators (VCOs)</subject><subject>wide tuning range</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE9Lw0AQxRdRsFY_gHhZ8Lx1ZtNkNxdBS2wFSwtGPYZNMrGp5o_ZBKl-eRNanMM8Bt6bBz_GLhEmiODfhMswnEhANZHKU67vHLERuq4SvqfgmI0AUAt_quGUnVm77c-pC3rEfmHiiHDxw5_zOYl7Yynli_x9I4Isy5OcymTH153diGHx19nK8re83fBbjqJ442syH3zVtXXX8nX1TQ0Pivqz2uXlO59VRVGVYlmlxB-LmlJTJsSDcjNoQWV7zk4y82np4qBj9vIQhLOFeFrNH2d3TyKRvtMKZTAlwCzTsZEeSKkSGVNsfC91fdQpykxL8J04gxS1Z2KppespSlyMNaTKGbPr_d-6qb46sm20rbqm7CsjiWo61f3I3oV7V9JU1jaURXWTF6bZRQjRwDgaGEcD4-jAuM9c7TM5Ef37NQIoVzp_sAl2Qw</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Ahmed, Faisal</creator><creator>Furqan, Muhammad</creator><creator>Heinemann, Bernd</creator><creator>Stelzer, Andreas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8935-7756</orcidid><orcidid>https://orcid.org/0000-0002-0053-0170</orcidid></search><sort><creationdate>20180301</creationdate><title>0.3-THz SiGe-Based High-Efficiency Push-Push VCOs With > 1-mW Peak Output Power Employing Common-Mode Impedance Enhancement</title><author>Ahmed, Faisal ; Furqan, Muhammad ; Heinemann, Bernd ; Stelzer, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7a1de01ff8ba260227c2beba96d5918d12f82093bf0d186ab282567ec51b80d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Capacitors</topic><topic>Efficiency</topic><topic>Electric potential</topic><topic>Electrons</topic><topic>Frequency analysis</topic><topic>Harmonic analysis</topic><topic>Heterojunction bipolar transistor (HBT)</topic><topic>Impedance</topic><topic>Input impedance</topic><topic>Mathematical analysis</topic><topic>millimeter wave (mm-wave)</topic><topic>Millimeter waves</topic><topic>Oscillators</topic><topic>Power efficiency</topic><topic>Power generation</topic><topic>Power system harmonics</topic><topic>Resonant frequency</topic><topic>SiGe BiCMOS</topic><topic>Silicon germanides</topic><topic>State of the art</topic><topic>terahertz (THz)</topic><topic>Tuning</topic><topic>Voltage controlled oscillators</topic><topic>voltage-controlled oscillators (VCOs)</topic><topic>wide tuning range</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Faisal</creatorcontrib><creatorcontrib>Furqan, Muhammad</creatorcontrib><creatorcontrib>Heinemann, Bernd</creatorcontrib><creatorcontrib>Stelzer, Andreas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Faisal</au><au>Furqan, Muhammad</au><au>Heinemann, Bernd</au><au>Stelzer, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>0.3-THz SiGe-Based High-Efficiency Push-Push VCOs With > 1-mW Peak Output Power Employing Common-Mode Impedance Enhancement</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>66</volume><issue>3</issue><spage>1384</spage><epage>1398</epage><pages>1384-1398</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract><![CDATA[We present a novel method of maximizing the output power and efficiency of millimeter-wave and terahertz signal sources, which are based on the push-push topology. In this method, the common-mode impedance of a differential Colpitts oscillator operating in the odd mode is maximized by introducing a fixed-valued capacitor (<inline-formula> <tex-math notation="LaTeX">C_{r} </tex-math></inline-formula>) at the common-base node. This capacitor is designed to introduce a common-mode parallel resonance at the desired second harmonic, boosting the common-mode voltage swing and subsequently its output power. The proposed method is analyzed using a high-frequency even-mode <inline-formula> <tex-math notation="LaTeX">\pi </tex-math></inline-formula>-model. Analytical expressions of input impedance are derived and are used for calculating the common-mode resonance frequency and the required value of <inline-formula> <tex-math notation="LaTeX">C_{r} </tex-math></inline-formula>. Two 0.3-THz voltage-controlled oscillators (VCOs) are implemented in a 130-nm SiGe BiCMOS process. It is shown that by using the proposed technique, the output power is improved by more than 6 dB, as compared with the conventional approaches. The implemented VCOs work from 292 to 318 GHz and 305 to 327 GHz, delivering a peak output power of 0.6 and 0.2 dBm, with a dc-to-RF efficiency of 0.8% and 0.9%, and can achieve a phase noise of −108 and −105 dBc/Hz at 10-MHz offset, respectively. As compared with the prior state-of-the-art Si-based tunable signal sources and arrays working above 270 GHz, this paper shows the lowest phase noise and the best figure-of-merit, while having an excellent output power, a tuning range, and a dc-to-RF efficiency.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2017.2767593</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8935-7756</orcidid><orcidid>https://orcid.org/0000-0002-0053-0170</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2018-03, Vol.66 (3), p.1384-1398 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_ieee_primary_8100752 |
source | IEEE Xplore (Online service) |
subjects | Capacitors Efficiency Electric potential Electrons Frequency analysis Harmonic analysis Heterojunction bipolar transistor (HBT) Impedance Input impedance Mathematical analysis millimeter wave (mm-wave) Millimeter waves Oscillators Power efficiency Power generation Power system harmonics Resonant frequency SiGe BiCMOS Silicon germanides State of the art terahertz (THz) Tuning Voltage controlled oscillators voltage-controlled oscillators (VCOs) wide tuning range |
title | 0.3-THz SiGe-Based High-Efficiency Push-Push VCOs With > 1-mW Peak Output Power Employing Common-Mode Impedance Enhancement |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T01%3A54%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=0.3-THz%20SiGe-Based%20High-Efficiency%20Push-Push%20VCOs%20With%20%3E%201-mW%20Peak%20Output%20Power%20Employing%20Common-Mode%20Impedance%20Enhancement&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Ahmed,%20Faisal&rft.date=2018-03-01&rft.volume=66&rft.issue=3&rft.spage=1384&rft.epage=1398&rft.pages=1384-1398&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2017.2767593&rft_dat=%3Cproquest_ieee_%3E2174488882%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-7a1de01ff8ba260227c2beba96d5918d12f82093bf0d186ab282567ec51b80d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174488882&rft_id=info:pmid/&rft_ieee_id=8100752&rfr_iscdi=true |