Loading…
Essential Measurements for Finite Element Simulations of Magnetostrictive Materials
We discuss which magnetoelastic material properties are essential to measure in order to model magnetostrictive materials in finite element simulations. We show knowing the magnetic constitutive relation is sufficient, if the elastic behavior without magnetic field is known a priori. We neglect hyst...
Saved in:
Published in: | IEEE transactions on magnetics 2018-01, Vol.54 (1), p.1-7 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We discuss which magnetoelastic material properties are essential to measure in order to model magnetostrictive materials in finite element simulations. We show knowing the magnetic constitutive relation is sufficient, if the elastic behavior without magnetic field is known a priori. We neglect hysteresis, and our starting point is to express the effect of mechanical deformation on the magnetic constitutive relation with a small strain tensor and magnetic flux density. It follows that the (energetic) state of a magnetostrictive material is independent of its history. Then, a certain choice of history allows us to keep magnetism and elasticity distinct. We demonstrate with open source software Elmer, how one can set up such magnetoelastic simulations. These simulations rely on data obtained from magnetostrictive measurements. Finally, it is discussed how a measurement setup and the finite element model should be combined in order to verify the approach with experiments. |
---|---|
ISSN: | 0018-9464 1941-0069 |
DOI: | 10.1109/TMAG.2017.2766599 |