Loading…
Searching for Behavior Patterns of Students in Different Training Modalities through Learning Management Systems
The behavior of university students is a field of study on the rise, whose main objective is the search for patterns that help improve their learning process. This paper analyzes the use of Learning Management Systems (LMS) in Higher Education and the interactions with their different tools from the...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 51 |
container_issue | |
container_start_page | 44 |
container_title | |
container_volume | |
creator | Cantabella, Magdalena Dominguez de la Fuente, Elisabeth Martinez-Espana, Raquel Ayuso, Belen Munoz, Andres |
description | The behavior of university students is a field of study on the rise, whose main objective is the search for patterns that help improve their learning process. This paper analyzes the use of Learning Management Systems (LMS) in Higher Education and the interactions with their different tools from the students' viewpoint. For the analysis of the student activity statistical techniques and algorithms are extending to be used for big data platform. The information extracted from each student is based both on the events held in each session and on the number of sessions held. The analyzed data belongs to subjects of different modalities (on-campus, blended, online). The results of the methods are compared and discussed regarding the learning modalities. The results are interpreted in a discussion focus obtaining satisfactory knowledge for the identification of patterns of behavior. |
doi_str_mv | 10.1109/IE.2017.31 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8114647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8114647</ieee_id><sourcerecordid>8114647</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-878309bd32593f6909be8919be06452a46f0cb69b15cb2462f506f7994d97f9e3</originalsourceid><addsrcrecordid>eNotTMtOAjEUrSYmIrJx66Y_MNjb53SpCEqC0QRckw5zy9TADGmLCX_vENycR86DkAdgYwBmn-bTMWdgxgKuyB0oUWqwnPFrMuDS8MIoA7dklNIPYww0qNLIATks0cVNE9ot9V2kL9i439CLL5czxjbRztNlPtbY5kRDS1-D9xh7R1fRhfa8--hqtws5YKK5id1x29BFf3rJXOu2uD_3l6eUcZ_uyY13u4Sjfx6S79l0NXkvFp9v88nzoghgVC5KUwpmq1pwZYXXttdYWuiRaam4k9qzTaVtBWpTcam5V0x7Y62srfEWxZA8Xn4DIq4PMexdPK1LAKmlEX-76Vkx</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Searching for Behavior Patterns of Students in Different Training Modalities through Learning Management Systems</title><source>IEEE Xplore All Conference Series</source><creator>Cantabella, Magdalena ; Dominguez de la Fuente, Elisabeth ; Martinez-Espana, Raquel ; Ayuso, Belen ; Munoz, Andres</creator><creatorcontrib>Cantabella, Magdalena ; Dominguez de la Fuente, Elisabeth ; Martinez-Espana, Raquel ; Ayuso, Belen ; Munoz, Andres</creatorcontrib><description>The behavior of university students is a field of study on the rise, whose main objective is the search for patterns that help improve their learning process. This paper analyzes the use of Learning Management Systems (LMS) in Higher Education and the interactions with their different tools from the students' viewpoint. For the analysis of the student activity statistical techniques and algorithms are extending to be used for big data platform. The information extracted from each student is based both on the events held in each session and on the number of sessions held. The analyzed data belongs to subjects of different modalities (on-campus, blended, online). The results of the methods are compared and discussed regarding the learning modalities. The results are interpreted in a discussion focus obtaining satisfactory knowledge for the identification of patterns of behavior.</description><identifier>EISSN: 2472-7571</identifier><identifier>EISBN: 1538619202</identifier><identifier>EISBN: 9781538619209</identifier><identifier>DOI: 10.1109/IE.2017.31</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Big Data ; Data analysis ; Data mining ; e-learning ; Electronic learning ; Learning Management System ; pattern detection ; Training</subject><ispartof>2017 International Conference on Intelligent Environments (IE), 2017, p.44-51</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8114647$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8114647$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cantabella, Magdalena</creatorcontrib><creatorcontrib>Dominguez de la Fuente, Elisabeth</creatorcontrib><creatorcontrib>Martinez-Espana, Raquel</creatorcontrib><creatorcontrib>Ayuso, Belen</creatorcontrib><creatorcontrib>Munoz, Andres</creatorcontrib><title>Searching for Behavior Patterns of Students in Different Training Modalities through Learning Management Systems</title><title>2017 International Conference on Intelligent Environments (IE)</title><addtitle>IE</addtitle><description>The behavior of university students is a field of study on the rise, whose main objective is the search for patterns that help improve their learning process. This paper analyzes the use of Learning Management Systems (LMS) in Higher Education and the interactions with their different tools from the students' viewpoint. For the analysis of the student activity statistical techniques and algorithms are extending to be used for big data platform. The information extracted from each student is based both on the events held in each session and on the number of sessions held. The analyzed data belongs to subjects of different modalities (on-campus, blended, online). The results of the methods are compared and discussed regarding the learning modalities. The results are interpreted in a discussion focus obtaining satisfactory knowledge for the identification of patterns of behavior.</description><subject>Big Data</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>e-learning</subject><subject>Electronic learning</subject><subject>Learning Management System</subject><subject>pattern detection</subject><subject>Training</subject><issn>2472-7571</issn><isbn>1538619202</isbn><isbn>9781538619209</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotTMtOAjEUrSYmIrJx66Y_MNjb53SpCEqC0QRckw5zy9TADGmLCX_vENycR86DkAdgYwBmn-bTMWdgxgKuyB0oUWqwnPFrMuDS8MIoA7dklNIPYww0qNLIATks0cVNE9ot9V2kL9i439CLL5czxjbRztNlPtbY5kRDS1-D9xh7R1fRhfa8--hqtws5YKK5id1x29BFf3rJXOu2uD_3l6eUcZ_uyY13u4Sjfx6S79l0NXkvFp9v88nzoghgVC5KUwpmq1pwZYXXttdYWuiRaam4k9qzTaVtBWpTcam5V0x7Y62srfEWxZA8Xn4DIq4PMexdPK1LAKmlEX-76Vkx</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Cantabella, Magdalena</creator><creator>Dominguez de la Fuente, Elisabeth</creator><creator>Martinez-Espana, Raquel</creator><creator>Ayuso, Belen</creator><creator>Munoz, Andres</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201708</creationdate><title>Searching for Behavior Patterns of Students in Different Training Modalities through Learning Management Systems</title><author>Cantabella, Magdalena ; Dominguez de la Fuente, Elisabeth ; Martinez-Espana, Raquel ; Ayuso, Belen ; Munoz, Andres</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-878309bd32593f6909be8919be06452a46f0cb69b15cb2462f506f7994d97f9e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Big Data</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>e-learning</topic><topic>Electronic learning</topic><topic>Learning Management System</topic><topic>pattern detection</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Cantabella, Magdalena</creatorcontrib><creatorcontrib>Dominguez de la Fuente, Elisabeth</creatorcontrib><creatorcontrib>Martinez-Espana, Raquel</creatorcontrib><creatorcontrib>Ayuso, Belen</creatorcontrib><creatorcontrib>Munoz, Andres</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore / Electronic Library Online (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cantabella, Magdalena</au><au>Dominguez de la Fuente, Elisabeth</au><au>Martinez-Espana, Raquel</au><au>Ayuso, Belen</au><au>Munoz, Andres</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Searching for Behavior Patterns of Students in Different Training Modalities through Learning Management Systems</atitle><btitle>2017 International Conference on Intelligent Environments (IE)</btitle><stitle>IE</stitle><date>2017-08</date><risdate>2017</risdate><spage>44</spage><epage>51</epage><pages>44-51</pages><eissn>2472-7571</eissn><eisbn>1538619202</eisbn><eisbn>9781538619209</eisbn><coden>IEEPAD</coden><abstract>The behavior of university students is a field of study on the rise, whose main objective is the search for patterns that help improve their learning process. This paper analyzes the use of Learning Management Systems (LMS) in Higher Education and the interactions with their different tools from the students' viewpoint. For the analysis of the student activity statistical techniques and algorithms are extending to be used for big data platform. The information extracted from each student is based both on the events held in each session and on the number of sessions held. The analyzed data belongs to subjects of different modalities (on-campus, blended, online). The results of the methods are compared and discussed regarding the learning modalities. The results are interpreted in a discussion focus obtaining satisfactory knowledge for the identification of patterns of behavior.</abstract><pub>IEEE</pub><doi>10.1109/IE.2017.31</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2472-7571 |
ispartof | 2017 International Conference on Intelligent Environments (IE), 2017, p.44-51 |
issn | 2472-7571 |
language | eng |
recordid | cdi_ieee_primary_8114647 |
source | IEEE Xplore All Conference Series |
subjects | Big Data Data analysis Data mining e-learning Electronic learning Learning Management System pattern detection Training |
title | Searching for Behavior Patterns of Students in Different Training Modalities through Learning Management Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A19%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Searching%20for%20Behavior%20Patterns%20of%20Students%20in%20Different%20Training%20Modalities%20through%20Learning%20Management%20Systems&rft.btitle=2017%20International%20Conference%20on%20Intelligent%20Environments%20(IE)&rft.au=Cantabella,%20Magdalena&rft.date=2017-08&rft.spage=44&rft.epage=51&rft.pages=44-51&rft.eissn=2472-7571&rft.coden=IEEPAD&rft_id=info:doi/10.1109/IE.2017.31&rft.eisbn=1538619202&rft.eisbn_list=9781538619209&rft_dat=%3Cieee_CHZPO%3E8114647%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-878309bd32593f6909be8919be06452a46f0cb69b15cb2462f506f7994d97f9e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8114647&rfr_iscdi=true |