Loading…

ISAR imaging using filtered compressive sensing

Many methods have been developed over the last several decades to provide spatial imaging from backscattered ISAR data, including range-Doppler processing, subspace techniques, and more recently, compressive sensing. Range-Doppler processing generally has a lower resolution than subspace and compres...

Full description

Saved in:
Bibliographic Details
Main Authors: Mitchell, Jon, Tjuatja, Saibun
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2407
container_issue
container_start_page 2404
container_title
container_volume
creator Mitchell, Jon
Tjuatja, Saibun
description Many methods have been developed over the last several decades to provide spatial imaging from backscattered ISAR data, including range-Doppler processing, subspace techniques, and more recently, compressive sensing. Range-Doppler processing generally has a lower resolution than subspace and compressive sensing techniques. Subspace techniques provide a high resolution image and perform well in the presence of noise, but require a sufficiently high measurement bandwidth. In addition, in the presence of significant noise, subspace dimensionality can be difficult to determine. Compressive sensing can provide a very high resolution image under ideal circumstances but generally performs poorly in the presence of noise. This paper proposes a filtered compressive sensing method that improves compressive sensing ISAR imaging over direct methods.
doi_str_mv 10.1109/IGARSS.2017.8127476
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8127476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8127476</ieee_id><sourcerecordid>8127476</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d541741f35a5f4eac0b10839c1d7b9764d0bdb4ce2031eeb7e7fb6580f43bd063</originalsourceid><addsrcrecordid>eNotj91qwkAUhLcFof70CbzJCySesz852csgrQ0IgmmvJZs9K1vUStYW-vZV6s3MwAfDjBBzhAIR7KJZ1du2LSQgFRVK0lQ-iAkasKCtQXoUY4lG5QSgnsQkpc9rqCTAWCyatt5m8djt42mffaebhni48MA-67-O54FTij-cJT7d4EyMQndI_Hz3qfh4fXlfvuXrzapZ1us8IplL7o1G0hiU6UzQ3PXgECple_TkLJXag_NO9yxBIbMjpuBKU0HQynko1VTM_3sjM-_Ow3Xh8Lu7n1N_OkhDaQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>ISAR imaging using filtered compressive sensing</title><source>IEEE Xplore All Conference Series</source><creator>Mitchell, Jon ; Tjuatja, Saibun</creator><creatorcontrib>Mitchell, Jon ; Tjuatja, Saibun</creatorcontrib><description>Many methods have been developed over the last several decades to provide spatial imaging from backscattered ISAR data, including range-Doppler processing, subspace techniques, and more recently, compressive sensing. Range-Doppler processing generally has a lower resolution than subspace and compressive sensing techniques. Subspace techniques provide a high resolution image and perform well in the presence of noise, but require a sufficiently high measurement bandwidth. In addition, in the presence of significant noise, subspace dimensionality can be difficult to determine. Compressive sensing can provide a very high resolution image under ideal circumstances but generally performs poorly in the presence of noise. This paper proposes a filtered compressive sensing method that improves compressive sensing ISAR imaging over direct methods.</description><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 1509049517</identifier><identifier>EISBN: 9781509049516</identifier><identifier>DOI: 10.1109/IGARSS.2017.8127476</identifier><language>eng</language><publisher>IEEE</publisher><subject>Compressed sensing ; Filtering ; Frequency measurement ; Imaging ; Signal to noise ratio ; Spatial resolution</subject><ispartof>2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2017, p.2404-2407</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8127476$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,23911,23912,25121,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8127476$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mitchell, Jon</creatorcontrib><creatorcontrib>Tjuatja, Saibun</creatorcontrib><title>ISAR imaging using filtered compressive sensing</title><title>2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)</title><addtitle>IGARSS</addtitle><description>Many methods have been developed over the last several decades to provide spatial imaging from backscattered ISAR data, including range-Doppler processing, subspace techniques, and more recently, compressive sensing. Range-Doppler processing generally has a lower resolution than subspace and compressive sensing techniques. Subspace techniques provide a high resolution image and perform well in the presence of noise, but require a sufficiently high measurement bandwidth. In addition, in the presence of significant noise, subspace dimensionality can be difficult to determine. Compressive sensing can provide a very high resolution image under ideal circumstances but generally performs poorly in the presence of noise. This paper proposes a filtered compressive sensing method that improves compressive sensing ISAR imaging over direct methods.</description><subject>Compressed sensing</subject><subject>Filtering</subject><subject>Frequency measurement</subject><subject>Imaging</subject><subject>Signal to noise ratio</subject><subject>Spatial resolution</subject><issn>2153-7003</issn><isbn>1509049517</isbn><isbn>9781509049516</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj91qwkAUhLcFof70CbzJCySesz852csgrQ0IgmmvJZs9K1vUStYW-vZV6s3MwAfDjBBzhAIR7KJZ1du2LSQgFRVK0lQ-iAkasKCtQXoUY4lG5QSgnsQkpc9rqCTAWCyatt5m8djt42mffaebhni48MA-67-O54FTij-cJT7d4EyMQndI_Hz3qfh4fXlfvuXrzapZ1us8IplL7o1G0hiU6UzQ3PXgECple_TkLJXag_NO9yxBIbMjpuBKU0HQynko1VTM_3sjM-_Ow3Xh8Lu7n1N_OkhDaQ</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Mitchell, Jon</creator><creator>Tjuatja, Saibun</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201707</creationdate><title>ISAR imaging using filtered compressive sensing</title><author>Mitchell, Jon ; Tjuatja, Saibun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d541741f35a5f4eac0b10839c1d7b9764d0bdb4ce2031eeb7e7fb6580f43bd063</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Compressed sensing</topic><topic>Filtering</topic><topic>Frequency measurement</topic><topic>Imaging</topic><topic>Signal to noise ratio</topic><topic>Spatial resolution</topic><toplevel>online_resources</toplevel><creatorcontrib>Mitchell, Jon</creatorcontrib><creatorcontrib>Tjuatja, Saibun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mitchell, Jon</au><au>Tjuatja, Saibun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>ISAR imaging using filtered compressive sensing</atitle><btitle>2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)</btitle><stitle>IGARSS</stitle><date>2017-07</date><risdate>2017</risdate><spage>2404</spage><epage>2407</epage><pages>2404-2407</pages><eissn>2153-7003</eissn><eisbn>1509049517</eisbn><eisbn>9781509049516</eisbn><abstract>Many methods have been developed over the last several decades to provide spatial imaging from backscattered ISAR data, including range-Doppler processing, subspace techniques, and more recently, compressive sensing. Range-Doppler processing generally has a lower resolution than subspace and compressive sensing techniques. Subspace techniques provide a high resolution image and perform well in the presence of noise, but require a sufficiently high measurement bandwidth. In addition, in the presence of significant noise, subspace dimensionality can be difficult to determine. Compressive sensing can provide a very high resolution image under ideal circumstances but generally performs poorly in the presence of noise. This paper proposes a filtered compressive sensing method that improves compressive sensing ISAR imaging over direct methods.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2017.8127476</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2153-7003
ispartof 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2017, p.2404-2407
issn 2153-7003
language eng
recordid cdi_ieee_primary_8127476
source IEEE Xplore All Conference Series
subjects Compressed sensing
Filtering
Frequency measurement
Imaging
Signal to noise ratio
Spatial resolution
title ISAR imaging using filtered compressive sensing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A52%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=ISAR%20imaging%20using%20filtered%20compressive%20sensing&rft.btitle=2017%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium%20(IGARSS)&rft.au=Mitchell,%20Jon&rft.date=2017-07&rft.spage=2404&rft.epage=2407&rft.pages=2404-2407&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS.2017.8127476&rft.eisbn=1509049517&rft.eisbn_list=9781509049516&rft_dat=%3Cieee_CHZPO%3E8127476%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-d541741f35a5f4eac0b10839c1d7b9764d0bdb4ce2031eeb7e7fb6580f43bd063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8127476&rfr_iscdi=true