Loading…

Remote person authentication in different scenarios based on gait and face in front view

To predict criminal acts and to assure more security, the biometric remote recognition of people has lately been getting much interest among researchers. We propose in this paper to use biometric modalities that may be acquired remotely, which are the gait and the face. The gait is explored at 11 di...

Full description

Saved in:
Bibliographic Details
Main Authors: El Kissi Ghalleb, Asma, Ben Amara, Najoua Essoukri
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 491
container_issue
container_start_page 486
container_title
container_volume
creator El Kissi Ghalleb, Asma
Ben Amara, Najoua Essoukri
description To predict criminal acts and to assure more security, the biometric remote recognition of people has lately been getting much interest among researchers. We propose in this paper to use biometric modalities that may be acquired remotely, which are the gait and the face. The gait is explored at 11 different angles of view with different styles of clothes using the CASIA Gait Datasets A and B. For the front view, we fuse the gait with hard and soft facial biometrics. Tested on both public databases, the gait-based recognition has yielded interesting results in different cases compared to the existing results in the literature. The system based on the fusion of the gait with the face has led to better results.
doi_str_mv 10.1109/SSD.2017.8167008
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8167008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8167008</ieee_id><sourcerecordid>8167008</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7ed3dc8a38fa0dcd9fad759c76c2a3dd723a10bbe07b2e2613cdedbf50f818353</originalsourceid><addsrcrecordid>eNotUE1LAzEUjIJgrb0LXvIHtr5sPvcoVatQEKxCb-Vt8qIRu1s2UfHfu2JPw3wwDMPYhYC5ENBcrdc38xqEnTthLIA7YmdCS2eksHpzzCa1sqoCpcwpm-X8DgDCCN0oNWGbJ9r1hfiehtx3HD_LG3UleSxppKnjIcVIw6jx7KnDIfWZt5gp8NF_xVQ4doFH9PSXjkM_Jr8SfZ-zk4gfmWYHnLKXu9vnxX21elw-LK5XVRrHlcpSkME7lC4iBB-aiMHqxlvja5Qh2FqigLYlsG1NtRHSBwpt1BCdcFLLKbv8701EtN0PaYfDz_ZwhPwFvSxTfg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Remote person authentication in different scenarios based on gait and face in front view</title><source>IEEE Xplore All Conference Series</source><creator>El Kissi Ghalleb, Asma ; Ben Amara, Najoua Essoukri</creator><creatorcontrib>El Kissi Ghalleb, Asma ; Ben Amara, Najoua Essoukri</creatorcontrib><description>To predict criminal acts and to assure more security, the biometric remote recognition of people has lately been getting much interest among researchers. We propose in this paper to use biometric modalities that may be acquired remotely, which are the gait and the face. The gait is explored at 11 different angles of view with different styles of clothes using the CASIA Gait Datasets A and B. For the front view, we fuse the gait with hard and soft facial biometrics. Tested on both public databases, the gait-based recognition has yielded interesting results in different cases compared to the existing results in the literature. The system based on the fusion of the gait with the face has led to better results.</description><identifier>EISSN: 2474-0446</identifier><identifier>EISBN: 153863175X</identifier><identifier>EISBN: 9781538631751</identifier><identifier>DOI: 10.1109/SSD.2017.8167008</identifier><language>eng</language><publisher>IEEE</publisher><subject>angle of view ; Cameras ; data fusion ; Face ; Face recognition ; Feature extraction ; gait ; Image color analysis ; Legged locomotion</subject><ispartof>2017 14th International Multi-Conference on Systems, Signals &amp; Devices (SSD), 2017, p.486-491</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8167008$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8167008$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>El Kissi Ghalleb, Asma</creatorcontrib><creatorcontrib>Ben Amara, Najoua Essoukri</creatorcontrib><title>Remote person authentication in different scenarios based on gait and face in front view</title><title>2017 14th International Multi-Conference on Systems, Signals &amp; Devices (SSD)</title><addtitle>SSD</addtitle><description>To predict criminal acts and to assure more security, the biometric remote recognition of people has lately been getting much interest among researchers. We propose in this paper to use biometric modalities that may be acquired remotely, which are the gait and the face. The gait is explored at 11 different angles of view with different styles of clothes using the CASIA Gait Datasets A and B. For the front view, we fuse the gait with hard and soft facial biometrics. Tested on both public databases, the gait-based recognition has yielded interesting results in different cases compared to the existing results in the literature. The system based on the fusion of the gait with the face has led to better results.</description><subject>angle of view</subject><subject>Cameras</subject><subject>data fusion</subject><subject>Face</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>gait</subject><subject>Image color analysis</subject><subject>Legged locomotion</subject><issn>2474-0446</issn><isbn>153863175X</isbn><isbn>9781538631751</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUE1LAzEUjIJgrb0LXvIHtr5sPvcoVatQEKxCb-Vt8qIRu1s2UfHfu2JPw3wwDMPYhYC5ENBcrdc38xqEnTthLIA7YmdCS2eksHpzzCa1sqoCpcwpm-X8DgDCCN0oNWGbJ9r1hfiehtx3HD_LG3UleSxppKnjIcVIw6jx7KnDIfWZt5gp8NF_xVQ4doFH9PSXjkM_Jr8SfZ-zk4gfmWYHnLKXu9vnxX21elw-LK5XVRrHlcpSkME7lC4iBB-aiMHqxlvja5Qh2FqigLYlsG1NtRHSBwpt1BCdcFLLKbv8701EtN0PaYfDz_ZwhPwFvSxTfg</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>El Kissi Ghalleb, Asma</creator><creator>Ben Amara, Najoua Essoukri</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201703</creationdate><title>Remote person authentication in different scenarios based on gait and face in front view</title><author>El Kissi Ghalleb, Asma ; Ben Amara, Najoua Essoukri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7ed3dc8a38fa0dcd9fad759c76c2a3dd723a10bbe07b2e2613cdedbf50f818353</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>angle of view</topic><topic>Cameras</topic><topic>data fusion</topic><topic>Face</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>gait</topic><topic>Image color analysis</topic><topic>Legged locomotion</topic><toplevel>online_resources</toplevel><creatorcontrib>El Kissi Ghalleb, Asma</creatorcontrib><creatorcontrib>Ben Amara, Najoua Essoukri</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>El Kissi Ghalleb, Asma</au><au>Ben Amara, Najoua Essoukri</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Remote person authentication in different scenarios based on gait and face in front view</atitle><btitle>2017 14th International Multi-Conference on Systems, Signals &amp; Devices (SSD)</btitle><stitle>SSD</stitle><date>2017-03</date><risdate>2017</risdate><spage>486</spage><epage>491</epage><pages>486-491</pages><eissn>2474-0446</eissn><eisbn>153863175X</eisbn><eisbn>9781538631751</eisbn><abstract>To predict criminal acts and to assure more security, the biometric remote recognition of people has lately been getting much interest among researchers. We propose in this paper to use biometric modalities that may be acquired remotely, which are the gait and the face. The gait is explored at 11 different angles of view with different styles of clothes using the CASIA Gait Datasets A and B. For the front view, we fuse the gait with hard and soft facial biometrics. Tested on both public databases, the gait-based recognition has yielded interesting results in different cases compared to the existing results in the literature. The system based on the fusion of the gait with the face has led to better results.</abstract><pub>IEEE</pub><doi>10.1109/SSD.2017.8167008</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2474-0446
ispartof 2017 14th International Multi-Conference on Systems, Signals & Devices (SSD), 2017, p.486-491
issn 2474-0446
language eng
recordid cdi_ieee_primary_8167008
source IEEE Xplore All Conference Series
subjects angle of view
Cameras
data fusion
Face
Face recognition
Feature extraction
gait
Image color analysis
Legged locomotion
title Remote person authentication in different scenarios based on gait and face in front view
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A31%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Remote%20person%20authentication%20in%20different%20scenarios%20based%20on%20gait%20and%20face%20in%20front%20view&rft.btitle=2017%2014th%20International%20Multi-Conference%20on%20Systems,%20Signals%20&%20Devices%20(SSD)&rft.au=El%20Kissi%20Ghalleb,%20Asma&rft.date=2017-03&rft.spage=486&rft.epage=491&rft.pages=486-491&rft.eissn=2474-0446&rft_id=info:doi/10.1109/SSD.2017.8167008&rft.eisbn=153863175X&rft.eisbn_list=9781538631751&rft_dat=%3Cieee_CHZPO%3E8167008%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-7ed3dc8a38fa0dcd9fad759c76c2a3dd723a10bbe07b2e2613cdedbf50f818353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8167008&rfr_iscdi=true