Loading…

NIQSV+: A No-Reference Synthesized View Quality Assessment Metric

Benefiting from multi-view video plus depth and depth-image-based-rendering technologies, only limited views of a real 3-D scene need to be captured, compressed, and transmitted. However, the quality assessment of synthesized views is very challenging, since some new types of distortions, which are...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2018-04, Vol.27 (4), p.1652-1664
Main Authors: Shishun Tian, Lu Zhang, Morin, Luce, Deforges, Olivier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c268t-7c5326ed3ac6b2da0275e0412867c63862d02425a6c58016273c8f7a6cbdf7743
cites cdi_FETCH-LOGICAL-c268t-7c5326ed3ac6b2da0275e0412867c63862d02425a6c58016273c8f7a6cbdf7743
container_end_page 1664
container_issue 4
container_start_page 1652
container_title IEEE transactions on image processing
container_volume 27
creator Shishun Tian
Lu Zhang
Morin, Luce
Deforges, Olivier
description Benefiting from multi-view video plus depth and depth-image-based-rendering technologies, only limited views of a real 3-D scene need to be captured, compressed, and transmitted. However, the quality assessment of synthesized views is very challenging, since some new types of distortions, which are inherently different from the texture coding errors, are inevitably produced by view synthesis and depth map compression, and the corresponding original views (reference views) are usually not available. Thus the full-reference quality metrics cannot be used for synthesized views. In this paper, we propose a novel no-reference image quality assessment method for 3-D synthesized views (called NIQSV+). This blind metric can evaluate the quality of synthesized views by measuring the typical synthesis distortions: blurry regions, black holes, and stretching, with access to neither the reference image nor the depth map. To evaluate the performance of the proposed method, we compare it with four full-reference 3-D (synthesized view dedicated) metrics, five full-reference 2-D metrics, and three no-reference 2-D metrics. In terms of their correlations with subjective scores, our experimental results show that the proposed no-reference metric approaches the best of the state-of-the-art full reference and no-reference 3-D metrics; and outperforms the widely used no-reference and full-reference 2-D metrics significantly. In terms of its approximation of human ranking, the proposed metric achieves the best performance in the experimental test.
doi_str_mv 10.1109/TIP.2017.2781420
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8170274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8170274</ieee_id><sourcerecordid>1989575185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-7c5326ed3ac6b2da0275e0412867c63862d02425a6c58016273c8f7a6cbdf7743</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOqf3giC9VKQzJ81XvSvix2B-zE1vQ5aeskq3atMp89ebsbmrnCTP-8J5CDkB2gOg6dW4_9JjFFSPKQ2c0R3SgZRDTClnu2GmQsUKeHpADr3_oBS4ALlPDliaMM5Bd0j21B-O3i-voyx6quNXLLDBucNotJy3U_TlL-bRe4k_0XBhq7JdRpn36P0M5230iG1TuiOyV9jK4_Hm7JK3u9vxzUM8eL7v32SD2DGp21g5kTCJeWKdnLDcUqYEUg5MS-VkoiXLKeNMWOmEpiCZSpwuVLhO8kIpnnTJxbp3aivz2ZQz2yxNbUvzkA3M6i2EZKiR3xDY8zX72dRfC_StmZXeYVXZOdYLbyDVqVACtAgoXaOuqb1vsNh2AzUrySZINivJZiM5RM427YvJDPNt4N9qAE7XQImI228NKizNkz854nyT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989575185</pqid></control><display><type>article</type><title>NIQSV+: A No-Reference Synthesized View Quality Assessment Metric</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Shishun Tian ; Lu Zhang ; Morin, Luce ; Deforges, Olivier</creator><creatorcontrib>Shishun Tian ; Lu Zhang ; Morin, Luce ; Deforges, Olivier</creatorcontrib><description>Benefiting from multi-view video plus depth and depth-image-based-rendering technologies, only limited views of a real 3-D scene need to be captured, compressed, and transmitted. However, the quality assessment of synthesized views is very challenging, since some new types of distortions, which are inherently different from the texture coding errors, are inevitably produced by view synthesis and depth map compression, and the corresponding original views (reference views) are usually not available. Thus the full-reference quality metrics cannot be used for synthesized views. In this paper, we propose a novel no-reference image quality assessment method for 3-D synthesized views (called NIQSV+). This blind metric can evaluate the quality of synthesized views by measuring the typical synthesis distortions: blurry regions, black holes, and stretching, with access to neither the reference image nor the depth map. To evaluate the performance of the proposed method, we compare it with four full-reference 3-D (synthesized view dedicated) metrics, five full-reference 2-D metrics, and three no-reference 2-D metrics. In terms of their correlations with subjective scores, our experimental results show that the proposed no-reference metric approaches the best of the state-of-the-art full reference and no-reference 3-D metrics; and outperforms the widely used no-reference and full-reference 2-D metrics significantly. In terms of its approximation of human ranking, the proposed metric achieves the best performance in the experimental test.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2017.2781420</identifier><identifier>PMID: 29324418</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Computer Science ; DIBR ; Distortion ; Distortion measurement ; Image coding ; MVD ; no-reference ; Quality assessment ; Signal and Image Processing ; Three-dimensional displays ; Two dimensional displays ; view synthesis</subject><ispartof>IEEE transactions on image processing, 2018-04, Vol.27 (4), p.1652-1664</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-7c5326ed3ac6b2da0275e0412867c63862d02425a6c58016273c8f7a6cbdf7743</citedby><cites>FETCH-LOGICAL-c268t-7c5326ed3ac6b2da0275e0412867c63862d02425a6c58016273c8f7a6cbdf7743</cites><orcidid>0000-0002-7616-8382 ; 0000-0001-8241-1425 ; 0000-0003-0750-0959 ; 0000-0003-3332-2615 ; 0000-0002-8859-5453</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8170274$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29324418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01668626$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Shishun Tian</creatorcontrib><creatorcontrib>Lu Zhang</creatorcontrib><creatorcontrib>Morin, Luce</creatorcontrib><creatorcontrib>Deforges, Olivier</creatorcontrib><title>NIQSV+: A No-Reference Synthesized View Quality Assessment Metric</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Benefiting from multi-view video plus depth and depth-image-based-rendering technologies, only limited views of a real 3-D scene need to be captured, compressed, and transmitted. However, the quality assessment of synthesized views is very challenging, since some new types of distortions, which are inherently different from the texture coding errors, are inevitably produced by view synthesis and depth map compression, and the corresponding original views (reference views) are usually not available. Thus the full-reference quality metrics cannot be used for synthesized views. In this paper, we propose a novel no-reference image quality assessment method for 3-D synthesized views (called NIQSV+). This blind metric can evaluate the quality of synthesized views by measuring the typical synthesis distortions: blurry regions, black holes, and stretching, with access to neither the reference image nor the depth map. To evaluate the performance of the proposed method, we compare it with four full-reference 3-D (synthesized view dedicated) metrics, five full-reference 2-D metrics, and three no-reference 2-D metrics. In terms of their correlations with subjective scores, our experimental results show that the proposed no-reference metric approaches the best of the state-of-the-art full reference and no-reference 3-D metrics; and outperforms the widely used no-reference and full-reference 2-D metrics significantly. In terms of its approximation of human ranking, the proposed metric achieves the best performance in the experimental test.</description><subject>Computer Science</subject><subject>DIBR</subject><subject>Distortion</subject><subject>Distortion measurement</subject><subject>Image coding</subject><subject>MVD</subject><subject>no-reference</subject><subject>Quality assessment</subject><subject>Signal and Image Processing</subject><subject>Three-dimensional displays</subject><subject>Two dimensional displays</subject><subject>view synthesis</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOqf3giC9VKQzJ81XvSvix2B-zE1vQ5aeskq3atMp89ebsbmrnCTP-8J5CDkB2gOg6dW4_9JjFFSPKQ2c0R3SgZRDTClnu2GmQsUKeHpADr3_oBS4ALlPDliaMM5Bd0j21B-O3i-voyx6quNXLLDBucNotJy3U_TlL-bRe4k_0XBhq7JdRpn36P0M5230iG1TuiOyV9jK4_Hm7JK3u9vxzUM8eL7v32SD2DGp21g5kTCJeWKdnLDcUqYEUg5MS-VkoiXLKeNMWOmEpiCZSpwuVLhO8kIpnnTJxbp3aivz2ZQz2yxNbUvzkA3M6i2EZKiR3xDY8zX72dRfC_StmZXeYVXZOdYLbyDVqVACtAgoXaOuqb1vsNh2AzUrySZINivJZiM5RM427YvJDPNt4N9qAE7XQImI228NKizNkz854nyT</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Shishun Tian</creator><creator>Lu Zhang</creator><creator>Morin, Luce</creator><creator>Deforges, Olivier</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7616-8382</orcidid><orcidid>https://orcid.org/0000-0001-8241-1425</orcidid><orcidid>https://orcid.org/0000-0003-0750-0959</orcidid><orcidid>https://orcid.org/0000-0003-3332-2615</orcidid><orcidid>https://orcid.org/0000-0002-8859-5453</orcidid></search><sort><creationdate>201804</creationdate><title>NIQSV+: A No-Reference Synthesized View Quality Assessment Metric</title><author>Shishun Tian ; Lu Zhang ; Morin, Luce ; Deforges, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-7c5326ed3ac6b2da0275e0412867c63862d02425a6c58016273c8f7a6cbdf7743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer Science</topic><topic>DIBR</topic><topic>Distortion</topic><topic>Distortion measurement</topic><topic>Image coding</topic><topic>MVD</topic><topic>no-reference</topic><topic>Quality assessment</topic><topic>Signal and Image Processing</topic><topic>Three-dimensional displays</topic><topic>Two dimensional displays</topic><topic>view synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shishun Tian</creatorcontrib><creatorcontrib>Lu Zhang</creatorcontrib><creatorcontrib>Morin, Luce</creatorcontrib><creatorcontrib>Deforges, Olivier</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shishun Tian</au><au>Lu Zhang</au><au>Morin, Luce</au><au>Deforges, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NIQSV+: A No-Reference Synthesized View Quality Assessment Metric</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2018-04</date><risdate>2018</risdate><volume>27</volume><issue>4</issue><spage>1652</spage><epage>1664</epage><pages>1652-1664</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Benefiting from multi-view video plus depth and depth-image-based-rendering technologies, only limited views of a real 3-D scene need to be captured, compressed, and transmitted. However, the quality assessment of synthesized views is very challenging, since some new types of distortions, which are inherently different from the texture coding errors, are inevitably produced by view synthesis and depth map compression, and the corresponding original views (reference views) are usually not available. Thus the full-reference quality metrics cannot be used for synthesized views. In this paper, we propose a novel no-reference image quality assessment method for 3-D synthesized views (called NIQSV+). This blind metric can evaluate the quality of synthesized views by measuring the typical synthesis distortions: blurry regions, black holes, and stretching, with access to neither the reference image nor the depth map. To evaluate the performance of the proposed method, we compare it with four full-reference 3-D (synthesized view dedicated) metrics, five full-reference 2-D metrics, and three no-reference 2-D metrics. In terms of their correlations with subjective scores, our experimental results show that the proposed no-reference metric approaches the best of the state-of-the-art full reference and no-reference 3-D metrics; and outperforms the widely used no-reference and full-reference 2-D metrics significantly. In terms of its approximation of human ranking, the proposed metric achieves the best performance in the experimental test.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29324418</pmid><doi>10.1109/TIP.2017.2781420</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7616-8382</orcidid><orcidid>https://orcid.org/0000-0001-8241-1425</orcidid><orcidid>https://orcid.org/0000-0003-0750-0959</orcidid><orcidid>https://orcid.org/0000-0003-3332-2615</orcidid><orcidid>https://orcid.org/0000-0002-8859-5453</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2018-04, Vol.27 (4), p.1652-1664
issn 1057-7149
1941-0042
language eng
recordid cdi_ieee_primary_8170274
source IEEE Electronic Library (IEL) Journals
subjects Computer Science
DIBR
Distortion
Distortion measurement
Image coding
MVD
no-reference
Quality assessment
Signal and Image Processing
Three-dimensional displays
Two dimensional displays
view synthesis
title NIQSV+: A No-Reference Synthesized View Quality Assessment Metric
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NIQSV+:%20A%20No-Reference%20Synthesized%20View%20Quality%20Assessment%20Metric&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Shishun%20Tian&rft.date=2018-04&rft.volume=27&rft.issue=4&rft.spage=1652&rft.epage=1664&rft.pages=1652-1664&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2017.2781420&rft_dat=%3Cproquest_ieee_%3E1989575185%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-7c5326ed3ac6b2da0275e0412867c63862d02425a6c58016273c8f7a6cbdf7743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1989575185&rft_id=info:pmid/29324418&rft_ieee_id=8170274&rfr_iscdi=true