Loading…
A filtering method for k-nearest neighbor query processing in multimedia data retrieval applications
Efficient query processing in multi-dimensional indexing structures is an important issue for effective employment of multimedia data applications. A considerable number of studies, to date, have been conducted in this area. However the efficiency of the proposed solutions generally deteriorates as...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 340 vol.1 |
container_issue | |
container_start_page | 337 |
container_title | |
container_volume | 1 |
creator | Byung-Gon Kim Jae-Ho Lee Noh, S.H. Hae-Chull Lim |
description | Efficient query processing in multi-dimensional indexing structures is an important issue for effective employment of multimedia data applications. A considerable number of studies, to date, have been conducted in this area. However the efficiency of the proposed solutions generally deteriorates as the dimension of the data increases. We introduce a filtering method for efficient processing of k-nearest neighbor queries in multi-dimensional indexing structures. The proposed method is based on the R*-tree, and uses a vantage point for effective similarity searches. Through the use of a vantage point we are abler to filter out data objects and decrease the distance computation time. Experimental results show that the k-nearest neighbor search that uses the proposed method consistently outperforms the search performance that uses the existing method for the R*-tree. |
doi_str_mv | 10.1109/TENCON.1999.818419 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_818419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>818419</ieee_id><sourcerecordid>818419</sourcerecordid><originalsourceid>FETCH-LOGICAL-i89t-3d95f54533458397af82d3c80389ce01c215a7fd3cea6cfdaed30ed37aaab3813</originalsourceid><addsrcrecordid>eNotUNtqwzAUM4zBtq4_0Cf_QDK7jhv7sYTuAqV9yXs5jY_bs-U22x3075fRCYRACCHE2EKKXEphX-rNrtrvcmmtzY00hbR37EmURihdKrt6YPMYP8WEQmspi0fm1txTmzBQf-IdpvPguB8C_8p6hIAx8R7pdD5O1vcFw5WPYWgwxr849by7tIk6dATcQQIeMAXCH2g5jGNLDSQa-vjM7j20Eef_OmP166au3rPt_u2jWm8zMjZlylntdaGVKrRRtgRvlk4103ZjGxSyWUoNpZ8shFXjHaBTYmIJAEdlpJqxxa2WEPEwBuogXA-3G9QvLGZWaw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A filtering method for k-nearest neighbor query processing in multimedia data retrieval applications</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Byung-Gon Kim ; Jae-Ho Lee ; Noh, S.H. ; Hae-Chull Lim</creator><creatorcontrib>Byung-Gon Kim ; Jae-Ho Lee ; Noh, S.H. ; Hae-Chull Lim</creatorcontrib><description>Efficient query processing in multi-dimensional indexing structures is an important issue for effective employment of multimedia data applications. A considerable number of studies, to date, have been conducted in this area. However the efficiency of the proposed solutions generally deteriorates as the dimension of the data increases. We introduce a filtering method for efficient processing of k-nearest neighbor queries in multi-dimensional indexing structures. The proposed method is based on the R*-tree, and uses a vantage point for effective similarity searches. Through the use of a vantage point we are abler to filter out data objects and decrease the distance computation time. Experimental results show that the k-nearest neighbor search that uses the proposed method consistently outperforms the search performance that uses the existing method for the R*-tree.</description><identifier>ISBN: 0780357396</identifier><identifier>ISBN: 9780780357396</identifier><identifier>DOI: 10.1109/TENCON.1999.818419</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Computer science education ; Data engineering ; Electronic mail ; Filtering ; Filters ; Indexing ; Information retrieval ; Nearest neighbor searches ; Query processing</subject><ispartof>Proceedings of IEEE. IEEE Region 10 Conference. TENCON 99. 'Multimedia Technology for Asia-Pacific Information Infrastructure' (Cat. No.99CH37030), 1999, Vol.1, p.337-340 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/818419$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/818419$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Byung-Gon Kim</creatorcontrib><creatorcontrib>Jae-Ho Lee</creatorcontrib><creatorcontrib>Noh, S.H.</creatorcontrib><creatorcontrib>Hae-Chull Lim</creatorcontrib><title>A filtering method for k-nearest neighbor query processing in multimedia data retrieval applications</title><title>Proceedings of IEEE. IEEE Region 10 Conference. TENCON 99. 'Multimedia Technology for Asia-Pacific Information Infrastructure' (Cat. No.99CH37030)</title><addtitle>TENCON</addtitle><description>Efficient query processing in multi-dimensional indexing structures is an important issue for effective employment of multimedia data applications. A considerable number of studies, to date, have been conducted in this area. However the efficiency of the proposed solutions generally deteriorates as the dimension of the data increases. We introduce a filtering method for efficient processing of k-nearest neighbor queries in multi-dimensional indexing structures. The proposed method is based on the R*-tree, and uses a vantage point for effective similarity searches. Through the use of a vantage point we are abler to filter out data objects and decrease the distance computation time. Experimental results show that the k-nearest neighbor search that uses the proposed method consistently outperforms the search performance that uses the existing method for the R*-tree.</description><subject>Application software</subject><subject>Computer science education</subject><subject>Data engineering</subject><subject>Electronic mail</subject><subject>Filtering</subject><subject>Filters</subject><subject>Indexing</subject><subject>Information retrieval</subject><subject>Nearest neighbor searches</subject><subject>Query processing</subject><isbn>0780357396</isbn><isbn>9780780357396</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUNtqwzAUM4zBtq4_0Cf_QDK7jhv7sYTuAqV9yXs5jY_bs-U22x3075fRCYRACCHE2EKKXEphX-rNrtrvcmmtzY00hbR37EmURihdKrt6YPMYP8WEQmspi0fm1txTmzBQf-IdpvPguB8C_8p6hIAx8R7pdD5O1vcFw5WPYWgwxr849by7tIk6dATcQQIeMAXCH2g5jGNLDSQa-vjM7j20Eef_OmP166au3rPt_u2jWm8zMjZlylntdaGVKrRRtgRvlk4103ZjGxSyWUoNpZ8shFXjHaBTYmIJAEdlpJqxxa2WEPEwBuogXA-3G9QvLGZWaw</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Byung-Gon Kim</creator><creator>Jae-Ho Lee</creator><creator>Noh, S.H.</creator><creator>Hae-Chull Lim</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>A filtering method for k-nearest neighbor query processing in multimedia data retrieval applications</title><author>Byung-Gon Kim ; Jae-Ho Lee ; Noh, S.H. ; Hae-Chull Lim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i89t-3d95f54533458397af82d3c80389ce01c215a7fd3cea6cfdaed30ed37aaab3813</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Application software</topic><topic>Computer science education</topic><topic>Data engineering</topic><topic>Electronic mail</topic><topic>Filtering</topic><topic>Filters</topic><topic>Indexing</topic><topic>Information retrieval</topic><topic>Nearest neighbor searches</topic><topic>Query processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Byung-Gon Kim</creatorcontrib><creatorcontrib>Jae-Ho Lee</creatorcontrib><creatorcontrib>Noh, S.H.</creatorcontrib><creatorcontrib>Hae-Chull Lim</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Byung-Gon Kim</au><au>Jae-Ho Lee</au><au>Noh, S.H.</au><au>Hae-Chull Lim</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A filtering method for k-nearest neighbor query processing in multimedia data retrieval applications</atitle><btitle>Proceedings of IEEE. IEEE Region 10 Conference. TENCON 99. 'Multimedia Technology for Asia-Pacific Information Infrastructure' (Cat. No.99CH37030)</btitle><stitle>TENCON</stitle><date>1999</date><risdate>1999</risdate><volume>1</volume><spage>337</spage><epage>340 vol.1</epage><pages>337-340 vol.1</pages><isbn>0780357396</isbn><isbn>9780780357396</isbn><abstract>Efficient query processing in multi-dimensional indexing structures is an important issue for effective employment of multimedia data applications. A considerable number of studies, to date, have been conducted in this area. However the efficiency of the proposed solutions generally deteriorates as the dimension of the data increases. We introduce a filtering method for efficient processing of k-nearest neighbor queries in multi-dimensional indexing structures. The proposed method is based on the R*-tree, and uses a vantage point for effective similarity searches. Through the use of a vantage point we are abler to filter out data objects and decrease the distance computation time. Experimental results show that the k-nearest neighbor search that uses the proposed method consistently outperforms the search performance that uses the existing method for the R*-tree.</abstract><pub>IEEE</pub><doi>10.1109/TENCON.1999.818419</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780357396 |
ispartof | Proceedings of IEEE. IEEE Region 10 Conference. TENCON 99. 'Multimedia Technology for Asia-Pacific Information Infrastructure' (Cat. No.99CH37030), 1999, Vol.1, p.337-340 vol.1 |
issn | |
language | eng |
recordid | cdi_ieee_primary_818419 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Application software Computer science education Data engineering Electronic mail Filtering Filters Indexing Information retrieval Nearest neighbor searches Query processing |
title | A filtering method for k-nearest neighbor query processing in multimedia data retrieval applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20filtering%20method%20for%20k-nearest%20neighbor%20query%20processing%20in%20multimedia%20data%20retrieval%20applications&rft.btitle=Proceedings%20of%20IEEE.%20IEEE%20Region%2010%20Conference.%20TENCON%2099.%20'Multimedia%20Technology%20for%20Asia-Pacific%20Information%20Infrastructure'%20(Cat.%20No.99CH37030)&rft.au=Byung-Gon%20Kim&rft.date=1999&rft.volume=1&rft.spage=337&rft.epage=340%20vol.1&rft.pages=337-340%20vol.1&rft.isbn=0780357396&rft.isbn_list=9780780357396&rft_id=info:doi/10.1109/TENCON.1999.818419&rft_dat=%3Cieee_6IE%3E818419%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i89t-3d95f54533458397af82d3c80389ce01c215a7fd3cea6cfdaed30ed37aaab3813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=818419&rfr_iscdi=true |