Loading…

Unsupervised Classification of PolSAR Data Using a Scattering Similarity Measure Derived From a Geodesic Distance

In this letter, we propose a novel technique for obtaining scattering components from polarimetric synthetic aperture radar (PolSAR) data using the geodesic distance on the unit sphere. This geodesic distance is obtained between an elementary target and the observed Kennaugh matrix, and it is furthe...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters 2018-01, Vol.15 (1), p.151-155
Main Authors: Ratha, Debanshu, Bhattacharya, Avik, Frery, Alejandro C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-a1e213f04283e3713824e00d30c4464fb703a551ffe2d1d9a1884c60095479d43
cites cdi_FETCH-LOGICAL-c293t-a1e213f04283e3713824e00d30c4464fb703a551ffe2d1d9a1884c60095479d43
container_end_page 155
container_issue 1
container_start_page 151
container_title IEEE geoscience and remote sensing letters
container_volume 15
creator Ratha, Debanshu
Bhattacharya, Avik
Frery, Alejandro C.
description In this letter, we propose a novel technique for obtaining scattering components from polarimetric synthetic aperture radar (PolSAR) data using the geodesic distance on the unit sphere. This geodesic distance is obtained between an elementary target and the observed Kennaugh matrix, and it is further utilized to compute a similarity measure between scattering mechanisms. The normalized similarity measure for each elementary target is then modulated with the total scattering power (Span). This measure is used to categorize pixels into three categories, i.e., odd-bounce, double-bounce, and volume, depending on which of the above scattering mechanisms dominate. Then the maximum likelihood classifier of Lee et al. based on the complex Wishart distribution is iteratively used for each category. Dominant scattering mechanisms are thus preserved in this classification scheme. We show results for L-band AIRSAR and ALOS-2 data sets acquired over San Francisco and Mumbai, respectively. The scattering mechanisms are better preserved using the proposed methodology than the unsupervised classification results using the Freeman-Durden scattering powers on an orientation angle corrected PolSAR image. Furthermore: 1) the scattering similarity is a completely nonnegative quantity unlike the negative powers that might occur in double-bounce and odd-bounce scattering component under Freeman-Durden decomposition and 2) the methodology can be extended to more canonical targets as well as for bistatic scattering.
doi_str_mv 10.1109/LGRS.2017.2778749
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8207778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8207778</ieee_id><sourcerecordid>2174554041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a1e213f04283e3713824e00d30c4464fb703a551ffe2d1d9a1884c60095479d43</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxRdRsFY_gHgJeN6av032WFpbhYrSteAtxN2JpLSbmuwW-u3N0uJpZni_9wZelt0TPCIEF0_LxaocUUzkiEqpJC8usgERQuVYSHLZ71zkolBf19lNjBuMKVdKDrLfdRO7PYSDi1Cj6dbE6KyrTOt8g7xFH35bTlZoZlqD1tE1P8igMskthP4o3c5tTXDtEb2BiV0ANEvKIWXNg98leAG-hugqNHOxNU0Ft9mVNdsId-c5zNbz58_pS758X7xOJ8u8ogVrc0OAEmYxp4oBk4QpygHjmuGK8zG33xIzIwSxFmhN6sIQpXg1xrgQXBY1Z8Ps8ZS7D_63g9jqje9Ck15qSiQXgmNOEkVOVBV8jAGs3ge3M-GoCdZ9s7pvVvfN6nOzyfNw8jgA-OcVxTIB7A8xrnQ1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174554041</pqid></control><display><type>article</type><title>Unsupervised Classification of PolSAR Data Using a Scattering Similarity Measure Derived From a Geodesic Distance</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ratha, Debanshu ; Bhattacharya, Avik ; Frery, Alejandro C.</creator><creatorcontrib>Ratha, Debanshu ; Bhattacharya, Avik ; Frery, Alejandro C.</creatorcontrib><description>In this letter, we propose a novel technique for obtaining scattering components from polarimetric synthetic aperture radar (PolSAR) data using the geodesic distance on the unit sphere. This geodesic distance is obtained between an elementary target and the observed Kennaugh matrix, and it is further utilized to compute a similarity measure between scattering mechanisms. The normalized similarity measure for each elementary target is then modulated with the total scattering power (Span). This measure is used to categorize pixels into three categories, i.e., odd-bounce, double-bounce, and volume, depending on which of the above scattering mechanisms dominate. Then the maximum likelihood classifier of Lee et al. based on the complex Wishart distribution is iteratively used for each category. Dominant scattering mechanisms are thus preserved in this classification scheme. We show results for L-band AIRSAR and ALOS-2 data sets acquired over San Francisco and Mumbai, respectively. The scattering mechanisms are better preserved using the proposed methodology than the unsupervised classification results using the Freeman-Durden scattering powers on an orientation angle corrected PolSAR image. Furthermore: 1) the scattering similarity is a completely nonnegative quantity unlike the negative powers that might occur in double-bounce and odd-bounce scattering component under Freeman-Durden decomposition and 2) the methodology can be extended to more canonical targets as well as for bistatic scattering.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2017.2778749</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Classification ; Data ; Data acquisition ; Distance ; geodesic distance ; Level measurement ; Matrix decomposition ; Methods ; Orientation ; polarimetry ; Power measurement ; Radar ; Radar data ; Radar polarimetry ; Radar scattering ; SAR (radar) ; Scattering ; Similarity ; similarity measure ; Similarity measures ; Symmetric matrices ; Synthetic aperture radar</subject><ispartof>IEEE geoscience and remote sensing letters, 2018-01, Vol.15 (1), p.151-155</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a1e213f04283e3713824e00d30c4464fb703a551ffe2d1d9a1884c60095479d43</citedby><cites>FETCH-LOGICAL-c293t-a1e213f04283e3713824e00d30c4464fb703a551ffe2d1d9a1884c60095479d43</cites><orcidid>0000-0002-8002-5341 ; 0000-0001-6720-6108 ; 0000-0003-4377-8915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8207778$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Ratha, Debanshu</creatorcontrib><creatorcontrib>Bhattacharya, Avik</creatorcontrib><creatorcontrib>Frery, Alejandro C.</creatorcontrib><title>Unsupervised Classification of PolSAR Data Using a Scattering Similarity Measure Derived From a Geodesic Distance</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>In this letter, we propose a novel technique for obtaining scattering components from polarimetric synthetic aperture radar (PolSAR) data using the geodesic distance on the unit sphere. This geodesic distance is obtained between an elementary target and the observed Kennaugh matrix, and it is further utilized to compute a similarity measure between scattering mechanisms. The normalized similarity measure for each elementary target is then modulated with the total scattering power (Span). This measure is used to categorize pixels into three categories, i.e., odd-bounce, double-bounce, and volume, depending on which of the above scattering mechanisms dominate. Then the maximum likelihood classifier of Lee et al. based on the complex Wishart distribution is iteratively used for each category. Dominant scattering mechanisms are thus preserved in this classification scheme. We show results for L-band AIRSAR and ALOS-2 data sets acquired over San Francisco and Mumbai, respectively. The scattering mechanisms are better preserved using the proposed methodology than the unsupervised classification results using the Freeman-Durden scattering powers on an orientation angle corrected PolSAR image. Furthermore: 1) the scattering similarity is a completely nonnegative quantity unlike the negative powers that might occur in double-bounce and odd-bounce scattering component under Freeman-Durden decomposition and 2) the methodology can be extended to more canonical targets as well as for bistatic scattering.</description><subject>Classification</subject><subject>Data</subject><subject>Data acquisition</subject><subject>Distance</subject><subject>geodesic distance</subject><subject>Level measurement</subject><subject>Matrix decomposition</subject><subject>Methods</subject><subject>Orientation</subject><subject>polarimetry</subject><subject>Power measurement</subject><subject>Radar</subject><subject>Radar data</subject><subject>Radar polarimetry</subject><subject>Radar scattering</subject><subject>SAR (radar)</subject><subject>Scattering</subject><subject>Similarity</subject><subject>similarity measure</subject><subject>Similarity measures</subject><subject>Symmetric matrices</subject><subject>Synthetic aperture radar</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQxRdRsFY_gHgJeN6av032WFpbhYrSteAtxN2JpLSbmuwW-u3N0uJpZni_9wZelt0TPCIEF0_LxaocUUzkiEqpJC8usgERQuVYSHLZ71zkolBf19lNjBuMKVdKDrLfdRO7PYSDi1Cj6dbE6KyrTOt8g7xFH35bTlZoZlqD1tE1P8igMskthP4o3c5tTXDtEb2BiV0ANEvKIWXNg98leAG-hugqNHOxNU0Ft9mVNdsId-c5zNbz58_pS758X7xOJ8u8ogVrc0OAEmYxp4oBk4QpygHjmuGK8zG33xIzIwSxFmhN6sIQpXg1xrgQXBY1Z8Ps8ZS7D_63g9jqje9Ck15qSiQXgmNOEkVOVBV8jAGs3ge3M-GoCdZ9s7pvVvfN6nOzyfNw8jgA-OcVxTIB7A8xrnQ1</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Ratha, Debanshu</creator><creator>Bhattacharya, Avik</creator><creator>Frery, Alejandro C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8002-5341</orcidid><orcidid>https://orcid.org/0000-0001-6720-6108</orcidid><orcidid>https://orcid.org/0000-0003-4377-8915</orcidid></search><sort><creationdate>201801</creationdate><title>Unsupervised Classification of PolSAR Data Using a Scattering Similarity Measure Derived From a Geodesic Distance</title><author>Ratha, Debanshu ; Bhattacharya, Avik ; Frery, Alejandro C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a1e213f04283e3713824e00d30c4464fb703a551ffe2d1d9a1884c60095479d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classification</topic><topic>Data</topic><topic>Data acquisition</topic><topic>Distance</topic><topic>geodesic distance</topic><topic>Level measurement</topic><topic>Matrix decomposition</topic><topic>Methods</topic><topic>Orientation</topic><topic>polarimetry</topic><topic>Power measurement</topic><topic>Radar</topic><topic>Radar data</topic><topic>Radar polarimetry</topic><topic>Radar scattering</topic><topic>SAR (radar)</topic><topic>Scattering</topic><topic>Similarity</topic><topic>similarity measure</topic><topic>Similarity measures</topic><topic>Symmetric matrices</topic><topic>Synthetic aperture radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ratha, Debanshu</creatorcontrib><creatorcontrib>Bhattacharya, Avik</creatorcontrib><creatorcontrib>Frery, Alejandro C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ratha, Debanshu</au><au>Bhattacharya, Avik</au><au>Frery, Alejandro C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Classification of PolSAR Data Using a Scattering Similarity Measure Derived From a Geodesic Distance</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2018-01</date><risdate>2018</risdate><volume>15</volume><issue>1</issue><spage>151</spage><epage>155</epage><pages>151-155</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>In this letter, we propose a novel technique for obtaining scattering components from polarimetric synthetic aperture radar (PolSAR) data using the geodesic distance on the unit sphere. This geodesic distance is obtained between an elementary target and the observed Kennaugh matrix, and it is further utilized to compute a similarity measure between scattering mechanisms. The normalized similarity measure for each elementary target is then modulated with the total scattering power (Span). This measure is used to categorize pixels into three categories, i.e., odd-bounce, double-bounce, and volume, depending on which of the above scattering mechanisms dominate. Then the maximum likelihood classifier of Lee et al. based on the complex Wishart distribution is iteratively used for each category. Dominant scattering mechanisms are thus preserved in this classification scheme. We show results for L-band AIRSAR and ALOS-2 data sets acquired over San Francisco and Mumbai, respectively. The scattering mechanisms are better preserved using the proposed methodology than the unsupervised classification results using the Freeman-Durden scattering powers on an orientation angle corrected PolSAR image. Furthermore: 1) the scattering similarity is a completely nonnegative quantity unlike the negative powers that might occur in double-bounce and odd-bounce scattering component under Freeman-Durden decomposition and 2) the methodology can be extended to more canonical targets as well as for bistatic scattering.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2017.2778749</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8002-5341</orcidid><orcidid>https://orcid.org/0000-0001-6720-6108</orcidid><orcidid>https://orcid.org/0000-0003-4377-8915</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2018-01, Vol.15 (1), p.151-155
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_8207778
source IEEE Electronic Library (IEL) Journals
subjects Classification
Data
Data acquisition
Distance
geodesic distance
Level measurement
Matrix decomposition
Methods
Orientation
polarimetry
Power measurement
Radar
Radar data
Radar polarimetry
Radar scattering
SAR (radar)
Scattering
Similarity
similarity measure
Similarity measures
Symmetric matrices
Synthetic aperture radar
title Unsupervised Classification of PolSAR Data Using a Scattering Similarity Measure Derived From a Geodesic Distance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Classification%20of%20PolSAR%20Data%20Using%20a%20Scattering%20Similarity%20Measure%20Derived%20From%20a%20Geodesic%20Distance&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Ratha,%20Debanshu&rft.date=2018-01&rft.volume=15&rft.issue=1&rft.spage=151&rft.epage=155&rft.pages=151-155&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2017.2778749&rft_dat=%3Cproquest_ieee_%3E2174554041%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-a1e213f04283e3713824e00d30c4464fb703a551ffe2d1d9a1884c60095479d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174554041&rft_id=info:pmid/&rft_ieee_id=8207778&rfr_iscdi=true