Loading…

A High Energy Efficient Reconfigurable Hybrid Neural Network Processor for Deep Learning Applications

Hybrid neural networks (hybrid-NNs) have been widely used and brought new challenges to NN processors. Thinker is an energy efficient reconfigurable hybrid-NN processor fabricated in 65-nm technology. To achieve high energy efficiency, three optimization techniques are proposed. First, each processi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of solid-state circuits 2018-04, Vol.53 (4), p.968-982
Main Authors: Yin, Shouyi, Ouyang, Peng, Tang, Shibin, Tu, Fengbin, Li, Xiudong, Zheng, Shixuan, Lu, Tianyi, Gu, Jiangyuan, Liu, Leibo, Wei, Shaojun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c407t-7c25fcab612109a360635c30506f9189d0b99bed5d1d24b1b1e1f36edcc1454c3
cites cdi_FETCH-LOGICAL-c407t-7c25fcab612109a360635c30506f9189d0b99bed5d1d24b1b1e1f36edcc1454c3
container_end_page 982
container_issue 4
container_start_page 968
container_title IEEE journal of solid-state circuits
container_volume 53
creator Yin, Shouyi
Ouyang, Peng
Tang, Shibin
Tu, Fengbin
Li, Xiudong
Zheng, Shixuan
Lu, Tianyi
Gu, Jiangyuan
Liu, Leibo
Wei, Shaojun
description Hybrid neural networks (hybrid-NNs) have been widely used and brought new challenges to NN processors. Thinker is an energy efficient reconfigurable hybrid-NN processor fabricated in 65-nm technology. To achieve high energy efficiency, three optimization techniques are proposed. First, each processing element (PE) supports bit-width adaptive computing to meet various bit-widths of neural layers, which raises computing throughput by 91% and improves energy efficiency by 1.93 \times on average. Second, PE array supports on-demand array partitioning and reconfiguration for processing different NNs in parallel, which results in 13.7% improvement of PE utilization and improves energy efficiency by 1.11 \times . Third, a fused data pattern-based multi-bank memory system is designed to exploit data reuse and guarantee parallel data access, which improves computing throughput and energy efficiency by 1.11 \times and 1.17 \times , respectively. Measurement results show that this processor achieves 5.09-TOPS/W energy efficiency at most.
doi_str_mv 10.1109/JSSC.2017.2778281
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8207783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8207783</ieee_id><sourcerecordid>2018040474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-7c25fcab612109a360635c30506f9189d0b99bed5d1d24b1b1e1f36edcc1454c3</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMoOKd_gPgS8Lkz16RN-jjmdMpQcQq-lTa91Mza1qRD9t-bseHD8XHc991xP0IugU0AWHbzuFrNJjEDOYmlVLGCIzKCJFERSP5xTEaMgYqymLFTcub9OrRCKBgRnNKFrT_pvEVXb-ncGKsttgN9Rd21xtYbV5QN0sW2dLaiTxj6Jsjw27kv-uI6jd53jppQt4g9XWLhWtvWdNr3jdXFYLvWn5MTUzQeLw46Ju9387fZIlo-3z_MpstICyaHSOo4MbooU4jDTwVPWcoTzVnCUpOByipWZlmJVVJBFYsSSkAwPMVKaxCJ0HxMrvd7e9f9bNAP-brbuDaczAMbxQQTUgQX7F3add47NHnv7HfhtjmwfEcz39HcJWR-oBkyV_uMRcR_v4pZmHP-B0DucNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2018040474</pqid></control><display><type>article</type><title>A High Energy Efficient Reconfigurable Hybrid Neural Network Processor for Deep Learning Applications</title><source>IEEE Xplore (Online service)</source><creator>Yin, Shouyi ; Ouyang, Peng ; Tang, Shibin ; Tu, Fengbin ; Li, Xiudong ; Zheng, Shixuan ; Lu, Tianyi ; Gu, Jiangyuan ; Liu, Leibo ; Wei, Shaojun</creator><creatorcontrib>Yin, Shouyi ; Ouyang, Peng ; Tang, Shibin ; Tu, Fengbin ; Li, Xiudong ; Zheng, Shixuan ; Lu, Tianyi ; Gu, Jiangyuan ; Liu, Leibo ; Wei, Shaojun</creatorcontrib><description><![CDATA[Hybrid neural networks (hybrid-NNs) have been widely used and brought new challenges to NN processors. Thinker is an energy efficient reconfigurable hybrid-NN processor fabricated in 65-nm technology. To achieve high energy efficiency, three optimization techniques are proposed. First, each processing element (PE) supports bit-width adaptive computing to meet various bit-widths of neural layers, which raises computing throughput by 91% and improves energy efficiency by <inline-formula> <tex-math notation="LaTeX">1.93 \times </tex-math></inline-formula> on average. Second, PE array supports on-demand array partitioning and reconfiguration for processing different NNs in parallel, which results in 13.7% improvement of PE utilization and improves energy efficiency by <inline-formula> <tex-math notation="LaTeX">1.11 \times </tex-math></inline-formula>. Third, a fused data pattern-based multi-bank memory system is designed to exploit data reuse and guarantee parallel data access, which improves computing throughput and energy efficiency by <inline-formula> <tex-math notation="LaTeX">1.11 \times </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">1.17 \times </tex-math></inline-formula>, respectively. Measurement results show that this processor achieves 5.09-TOPS/W energy efficiency at most.]]></description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2017.2778281</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Arrays ; Artificial neural networks ; Computation ; Computer memory ; Deep learning ; Energy consumption ; Energy efficiency ; Energy measurement ; hybrid neural networks (hybrid-NNs) ; memory banking ; Microprocessors ; Neural networks ; Power efficiency ; reconfigurable computing ; Reconfiguration ; resource partitioning ; Speech recognition ; Throughput</subject><ispartof>IEEE journal of solid-state circuits, 2018-04, Vol.53 (4), p.968-982</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-7c25fcab612109a360635c30506f9189d0b99bed5d1d24b1b1e1f36edcc1454c3</citedby><cites>FETCH-LOGICAL-c407t-7c25fcab612109a360635c30506f9189d0b99bed5d1d24b1b1e1f36edcc1454c3</cites><orcidid>0000-0003-2309-572X ; 0000-0001-7548-4116 ; 0000-0003-2991-8678 ; 0000-0001-6388-3419 ; 0000-0003-2228-8829 ; 0000-0003-1190-7524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8207783$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yin, Shouyi</creatorcontrib><creatorcontrib>Ouyang, Peng</creatorcontrib><creatorcontrib>Tang, Shibin</creatorcontrib><creatorcontrib>Tu, Fengbin</creatorcontrib><creatorcontrib>Li, Xiudong</creatorcontrib><creatorcontrib>Zheng, Shixuan</creatorcontrib><creatorcontrib>Lu, Tianyi</creatorcontrib><creatorcontrib>Gu, Jiangyuan</creatorcontrib><creatorcontrib>Liu, Leibo</creatorcontrib><creatorcontrib>Wei, Shaojun</creatorcontrib><title>A High Energy Efficient Reconfigurable Hybrid Neural Network Processor for Deep Learning Applications</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description><![CDATA[Hybrid neural networks (hybrid-NNs) have been widely used and brought new challenges to NN processors. Thinker is an energy efficient reconfigurable hybrid-NN processor fabricated in 65-nm technology. To achieve high energy efficiency, three optimization techniques are proposed. First, each processing element (PE) supports bit-width adaptive computing to meet various bit-widths of neural layers, which raises computing throughput by 91% and improves energy efficiency by <inline-formula> <tex-math notation="LaTeX">1.93 \times </tex-math></inline-formula> on average. Second, PE array supports on-demand array partitioning and reconfiguration for processing different NNs in parallel, which results in 13.7% improvement of PE utilization and improves energy efficiency by <inline-formula> <tex-math notation="LaTeX">1.11 \times </tex-math></inline-formula>. Third, a fused data pattern-based multi-bank memory system is designed to exploit data reuse and guarantee parallel data access, which improves computing throughput and energy efficiency by <inline-formula> <tex-math notation="LaTeX">1.11 \times </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">1.17 \times </tex-math></inline-formula>, respectively. Measurement results show that this processor achieves 5.09-TOPS/W energy efficiency at most.]]></description><subject>Acceleration</subject><subject>Arrays</subject><subject>Artificial neural networks</subject><subject>Computation</subject><subject>Computer memory</subject><subject>Deep learning</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Energy measurement</subject><subject>hybrid neural networks (hybrid-NNs)</subject><subject>memory banking</subject><subject>Microprocessors</subject><subject>Neural networks</subject><subject>Power efficiency</subject><subject>reconfigurable computing</subject><subject>Reconfiguration</subject><subject>resource partitioning</subject><subject>Speech recognition</subject><subject>Throughput</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kNFLwzAQxoMoOKd_gPgS8Lkz16RN-jjmdMpQcQq-lTa91Mza1qRD9t-bseHD8XHc991xP0IugU0AWHbzuFrNJjEDOYmlVLGCIzKCJFERSP5xTEaMgYqymLFTcub9OrRCKBgRnNKFrT_pvEVXb-ncGKsttgN9Rd21xtYbV5QN0sW2dLaiTxj6Jsjw27kv-uI6jd53jppQt4g9XWLhWtvWdNr3jdXFYLvWn5MTUzQeLw46Ju9387fZIlo-3z_MpstICyaHSOo4MbooU4jDTwVPWcoTzVnCUpOByipWZlmJVVJBFYsSSkAwPMVKaxCJ0HxMrvd7e9f9bNAP-brbuDaczAMbxQQTUgQX7F3add47NHnv7HfhtjmwfEcz39HcJWR-oBkyV_uMRcR_v4pZmHP-B0DucNs</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Yin, Shouyi</creator><creator>Ouyang, Peng</creator><creator>Tang, Shibin</creator><creator>Tu, Fengbin</creator><creator>Li, Xiudong</creator><creator>Zheng, Shixuan</creator><creator>Lu, Tianyi</creator><creator>Gu, Jiangyuan</creator><creator>Liu, Leibo</creator><creator>Wei, Shaojun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2309-572X</orcidid><orcidid>https://orcid.org/0000-0001-7548-4116</orcidid><orcidid>https://orcid.org/0000-0003-2991-8678</orcidid><orcidid>https://orcid.org/0000-0001-6388-3419</orcidid><orcidid>https://orcid.org/0000-0003-2228-8829</orcidid><orcidid>https://orcid.org/0000-0003-1190-7524</orcidid></search><sort><creationdate>20180401</creationdate><title>A High Energy Efficient Reconfigurable Hybrid Neural Network Processor for Deep Learning Applications</title><author>Yin, Shouyi ; Ouyang, Peng ; Tang, Shibin ; Tu, Fengbin ; Li, Xiudong ; Zheng, Shixuan ; Lu, Tianyi ; Gu, Jiangyuan ; Liu, Leibo ; Wei, Shaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-7c25fcab612109a360635c30506f9189d0b99bed5d1d24b1b1e1f36edcc1454c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acceleration</topic><topic>Arrays</topic><topic>Artificial neural networks</topic><topic>Computation</topic><topic>Computer memory</topic><topic>Deep learning</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Energy measurement</topic><topic>hybrid neural networks (hybrid-NNs)</topic><topic>memory banking</topic><topic>Microprocessors</topic><topic>Neural networks</topic><topic>Power efficiency</topic><topic>reconfigurable computing</topic><topic>Reconfiguration</topic><topic>resource partitioning</topic><topic>Speech recognition</topic><topic>Throughput</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Shouyi</creatorcontrib><creatorcontrib>Ouyang, Peng</creatorcontrib><creatorcontrib>Tang, Shibin</creatorcontrib><creatorcontrib>Tu, Fengbin</creatorcontrib><creatorcontrib>Li, Xiudong</creatorcontrib><creatorcontrib>Zheng, Shixuan</creatorcontrib><creatorcontrib>Lu, Tianyi</creatorcontrib><creatorcontrib>Gu, Jiangyuan</creatorcontrib><creatorcontrib>Liu, Leibo</creatorcontrib><creatorcontrib>Wei, Shaojun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Shouyi</au><au>Ouyang, Peng</au><au>Tang, Shibin</au><au>Tu, Fengbin</au><au>Li, Xiudong</au><au>Zheng, Shixuan</au><au>Lu, Tianyi</au><au>Gu, Jiangyuan</au><au>Liu, Leibo</au><au>Wei, Shaojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High Energy Efficient Reconfigurable Hybrid Neural Network Processor for Deep Learning Applications</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>53</volume><issue>4</issue><spage>968</spage><epage>982</epage><pages>968-982</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract><![CDATA[Hybrid neural networks (hybrid-NNs) have been widely used and brought new challenges to NN processors. Thinker is an energy efficient reconfigurable hybrid-NN processor fabricated in 65-nm technology. To achieve high energy efficiency, three optimization techniques are proposed. First, each processing element (PE) supports bit-width adaptive computing to meet various bit-widths of neural layers, which raises computing throughput by 91% and improves energy efficiency by <inline-formula> <tex-math notation="LaTeX">1.93 \times </tex-math></inline-formula> on average. Second, PE array supports on-demand array partitioning and reconfiguration for processing different NNs in parallel, which results in 13.7% improvement of PE utilization and improves energy efficiency by <inline-formula> <tex-math notation="LaTeX">1.11 \times </tex-math></inline-formula>. Third, a fused data pattern-based multi-bank memory system is designed to exploit data reuse and guarantee parallel data access, which improves computing throughput and energy efficiency by <inline-formula> <tex-math notation="LaTeX">1.11 \times </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">1.17 \times </tex-math></inline-formula>, respectively. Measurement results show that this processor achieves 5.09-TOPS/W energy efficiency at most.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2017.2778281</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2309-572X</orcidid><orcidid>https://orcid.org/0000-0001-7548-4116</orcidid><orcidid>https://orcid.org/0000-0003-2991-8678</orcidid><orcidid>https://orcid.org/0000-0001-6388-3419</orcidid><orcidid>https://orcid.org/0000-0003-2228-8829</orcidid><orcidid>https://orcid.org/0000-0003-1190-7524</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2018-04, Vol.53 (4), p.968-982
issn 0018-9200
1558-173X
language eng
recordid cdi_ieee_primary_8207783
source IEEE Xplore (Online service)
subjects Acceleration
Arrays
Artificial neural networks
Computation
Computer memory
Deep learning
Energy consumption
Energy efficiency
Energy measurement
hybrid neural networks (hybrid-NNs)
memory banking
Microprocessors
Neural networks
Power efficiency
reconfigurable computing
Reconfiguration
resource partitioning
Speech recognition
Throughput
title A High Energy Efficient Reconfigurable Hybrid Neural Network Processor for Deep Learning Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High%20Energy%20Efficient%20Reconfigurable%20Hybrid%20Neural%20Network%20Processor%20for%20Deep%20Learning%20Applications&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Yin,%20Shouyi&rft.date=2018-04-01&rft.volume=53&rft.issue=4&rft.spage=968&rft.epage=982&rft.pages=968-982&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2017.2778281&rft_dat=%3Cproquest_ieee_%3E2018040474%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-7c25fcab612109a360635c30506f9189d0b99bed5d1d24b1b1e1f36edcc1454c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2018040474&rft_id=info:pmid/&rft_ieee_id=8207783&rfr_iscdi=true