Loading…
Anomaly Detection for a Water Treatment System Using Unsupervised Machine Learning
In this paper, we propose and evaluate the application of unsupervised machine learning to anomaly detection for a Cyber-Physical System (CPS). We compare two methods: Deep Neural Networks (DNN) adapted to time series data generated by a CPS, and one-class Support Vector Machines (SVM). These method...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c286t-990627a863944f34ef3a7ce80087c5dc2aa4d11917295de3ee8efd7e5a256dd33 |
---|---|
cites | |
container_end_page | 1065 |
container_issue | |
container_start_page | 1058 |
container_title | |
container_volume | |
creator | Jun Inoue Yamagata, Yoriyuki Yuqi Chen Poskitt, Christopher M. Jun Sun |
description | In this paper, we propose and evaluate the application of unsupervised machine learning to anomaly detection for a Cyber-Physical System (CPS). We compare two methods: Deep Neural Networks (DNN) adapted to time series data generated by a CPS, and one-class Support Vector Machines (SVM). These methods are evaluated against data from the Secure Water Treatment (SWaT) testbed, a scaled-down but fully operational raw water purification plant. For both methods, we first train detectors using a log generated by SWaT operating under normal conditions. Then, we evaluate the performance of both methods using a log generated by SWaT operating under 36 different attack scenarios. We find that our DNN generates fewer false positives than our one-class SVM while our SVM detects slightly more anomalies. Overall, our DNN has a slightly better F measure than our SVM. We discuss the characteristics of the DNN and one-class SVM used in this experiment, and compare the advantages and disadvantages of the two methods. |
doi_str_mv | 10.1109/ICDMW.2017.149 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8215783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8215783</ieee_id><sourcerecordid>8215783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-990627a863944f34ef3a7ce80087c5dc2aa4d11917295de3ee8efd7e5a256dd33</originalsourceid><addsrcrecordid>eNotjk1LwzAYgKMgOOeuXrzkD7Tmo2mS4-j8GHQIurLjeGneamVNRxKF_nsLenoODzw8hNxxlnPO7MO22uwOuWBc57ywF-SGK2lKaRgTl2QhpFaZFcpek1WMX4wxbmVhrViQt7UfBzhNdIMJ29SPnnZjoEAPkDDQfUBIA_pE36eYcKBN7P0HbXz8PmP46SM6uoP2s_dIa4TgZ3tLrjo4RVz9c0map8d99ZLVr8_bal1nrTBlyqxlpdAwX9qi6GSBnQTd4rxsdKtcKwAKx7nlWljlUCIa7JxGBUKVzkm5JPd_3R4Rj-fQDxCmoxFcaSPlL3FiT6A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Anomaly Detection for a Water Treatment System Using Unsupervised Machine Learning</title><source>IEEE Xplore All Conference Series</source><creator>Jun Inoue ; Yamagata, Yoriyuki ; Yuqi Chen ; Poskitt, Christopher M. ; Jun Sun</creator><creatorcontrib>Jun Inoue ; Yamagata, Yoriyuki ; Yuqi Chen ; Poskitt, Christopher M. ; Jun Sun</creatorcontrib><description>In this paper, we propose and evaluate the application of unsupervised machine learning to anomaly detection for a Cyber-Physical System (CPS). We compare two methods: Deep Neural Networks (DNN) adapted to time series data generated by a CPS, and one-class Support Vector Machines (SVM). These methods are evaluated against data from the Secure Water Treatment (SWaT) testbed, a scaled-down but fully operational raw water purification plant. For both methods, we first train detectors using a log generated by SWaT operating under normal conditions. Then, we evaluate the performance of both methods using a log generated by SWaT operating under 36 different attack scenarios. We find that our DNN generates fewer false positives than our one-class SVM while our SVM detects slightly more anomalies. Overall, our DNN has a slightly better F measure than our SVM. We discuss the characteristics of the DNN and one-class SVM used in this experiment, and compare the advantages and disadvantages of the two methods.</description><identifier>EISSN: 2375-9259</identifier><identifier>EISBN: 1538638002</identifier><identifier>EISBN: 9781538638002</identifier><identifier>DOI: 10.1109/ICDMW.2017.149</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Actuators ; Anomaly detection ; Computer architecture ; deep neural network ; machine learning ; Monitoring ; Sensors ; support vector machine ; Support vector machines ; Time series analysis ; water treatment system</subject><ispartof>2017 IEEE International Conference on Data Mining Workshops (ICDMW), 2017, p.1058-1065</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-990627a863944f34ef3a7ce80087c5dc2aa4d11917295de3ee8efd7e5a256dd33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8215783$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8215783$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jun Inoue</creatorcontrib><creatorcontrib>Yamagata, Yoriyuki</creatorcontrib><creatorcontrib>Yuqi Chen</creatorcontrib><creatorcontrib>Poskitt, Christopher M.</creatorcontrib><creatorcontrib>Jun Sun</creatorcontrib><title>Anomaly Detection for a Water Treatment System Using Unsupervised Machine Learning</title><title>2017 IEEE International Conference on Data Mining Workshops (ICDMW)</title><addtitle>ICDMW</addtitle><description>In this paper, we propose and evaluate the application of unsupervised machine learning to anomaly detection for a Cyber-Physical System (CPS). We compare two methods: Deep Neural Networks (DNN) adapted to time series data generated by a CPS, and one-class Support Vector Machines (SVM). These methods are evaluated against data from the Secure Water Treatment (SWaT) testbed, a scaled-down but fully operational raw water purification plant. For both methods, we first train detectors using a log generated by SWaT operating under normal conditions. Then, we evaluate the performance of both methods using a log generated by SWaT operating under 36 different attack scenarios. We find that our DNN generates fewer false positives than our one-class SVM while our SVM detects slightly more anomalies. Overall, our DNN has a slightly better F measure than our SVM. We discuss the characteristics of the DNN and one-class SVM used in this experiment, and compare the advantages and disadvantages of the two methods.</description><subject>Actuators</subject><subject>Anomaly detection</subject><subject>Computer architecture</subject><subject>deep neural network</subject><subject>machine learning</subject><subject>Monitoring</subject><subject>Sensors</subject><subject>support vector machine</subject><subject>Support vector machines</subject><subject>Time series analysis</subject><subject>water treatment system</subject><issn>2375-9259</issn><isbn>1538638002</isbn><isbn>9781538638002</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjk1LwzAYgKMgOOeuXrzkD7Tmo2mS4-j8GHQIurLjeGneamVNRxKF_nsLenoODzw8hNxxlnPO7MO22uwOuWBc57ywF-SGK2lKaRgTl2QhpFaZFcpek1WMX4wxbmVhrViQt7UfBzhNdIMJ29SPnnZjoEAPkDDQfUBIA_pE36eYcKBN7P0HbXz8PmP46SM6uoP2s_dIa4TgZ3tLrjo4RVz9c0map8d99ZLVr8_bal1nrTBlyqxlpdAwX9qi6GSBnQTd4rxsdKtcKwAKx7nlWljlUCIa7JxGBUKVzkm5JPd_3R4Rj-fQDxCmoxFcaSPlL3FiT6A</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Jun Inoue</creator><creator>Yamagata, Yoriyuki</creator><creator>Yuqi Chen</creator><creator>Poskitt, Christopher M.</creator><creator>Jun Sun</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201711</creationdate><title>Anomaly Detection for a Water Treatment System Using Unsupervised Machine Learning</title><author>Jun Inoue ; Yamagata, Yoriyuki ; Yuqi Chen ; Poskitt, Christopher M. ; Jun Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-990627a863944f34ef3a7ce80087c5dc2aa4d11917295de3ee8efd7e5a256dd33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Actuators</topic><topic>Anomaly detection</topic><topic>Computer architecture</topic><topic>deep neural network</topic><topic>machine learning</topic><topic>Monitoring</topic><topic>Sensors</topic><topic>support vector machine</topic><topic>Support vector machines</topic><topic>Time series analysis</topic><topic>water treatment system</topic><toplevel>online_resources</toplevel><creatorcontrib>Jun Inoue</creatorcontrib><creatorcontrib>Yamagata, Yoriyuki</creatorcontrib><creatorcontrib>Yuqi Chen</creatorcontrib><creatorcontrib>Poskitt, Christopher M.</creatorcontrib><creatorcontrib>Jun Sun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jun Inoue</au><au>Yamagata, Yoriyuki</au><au>Yuqi Chen</au><au>Poskitt, Christopher M.</au><au>Jun Sun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Anomaly Detection for a Water Treatment System Using Unsupervised Machine Learning</atitle><btitle>2017 IEEE International Conference on Data Mining Workshops (ICDMW)</btitle><stitle>ICDMW</stitle><date>2017-11</date><risdate>2017</risdate><spage>1058</spage><epage>1065</epage><pages>1058-1065</pages><eissn>2375-9259</eissn><eisbn>1538638002</eisbn><eisbn>9781538638002</eisbn><coden>IEEPAD</coden><abstract>In this paper, we propose and evaluate the application of unsupervised machine learning to anomaly detection for a Cyber-Physical System (CPS). We compare two methods: Deep Neural Networks (DNN) adapted to time series data generated by a CPS, and one-class Support Vector Machines (SVM). These methods are evaluated against data from the Secure Water Treatment (SWaT) testbed, a scaled-down but fully operational raw water purification plant. For both methods, we first train detectors using a log generated by SWaT operating under normal conditions. Then, we evaluate the performance of both methods using a log generated by SWaT operating under 36 different attack scenarios. We find that our DNN generates fewer false positives than our one-class SVM while our SVM detects slightly more anomalies. Overall, our DNN has a slightly better F measure than our SVM. We discuss the characteristics of the DNN and one-class SVM used in this experiment, and compare the advantages and disadvantages of the two methods.</abstract><pub>IEEE</pub><doi>10.1109/ICDMW.2017.149</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2375-9259 |
ispartof | 2017 IEEE International Conference on Data Mining Workshops (ICDMW), 2017, p.1058-1065 |
issn | 2375-9259 |
language | eng |
recordid | cdi_ieee_primary_8215783 |
source | IEEE Xplore All Conference Series |
subjects | Actuators Anomaly detection Computer architecture deep neural network machine learning Monitoring Sensors support vector machine Support vector machines Time series analysis water treatment system |
title | Anomaly Detection for a Water Treatment System Using Unsupervised Machine Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A02%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Anomaly%20Detection%20for%20a%20Water%20Treatment%20System%20Using%20Unsupervised%20Machine%20Learning&rft.btitle=2017%20IEEE%20International%20Conference%20on%20Data%20Mining%20Workshops%20(ICDMW)&rft.au=Jun%20Inoue&rft.date=2017-11&rft.spage=1058&rft.epage=1065&rft.pages=1058-1065&rft.eissn=2375-9259&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDMW.2017.149&rft.eisbn=1538638002&rft.eisbn_list=9781538638002&rft_dat=%3Cieee_CHZPO%3E8215783%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c286t-990627a863944f34ef3a7ce80087c5dc2aa4d11917295de3ee8efd7e5a256dd33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8215783&rfr_iscdi=true |