Loading…
Tensor Similarity in Two Modes
Multiway datasets are widespread in signal processing and play an important role in blind signal separation, array processing, and biomedical signal processing, among others. One key strength of tensors is that their decompositions are unique under mild conditions, which allows the recovery of featu...
Saved in:
Published in: | IEEE transactions on signal processing 2018-03, Vol.66 (5), p.1273-1285 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multiway datasets are widespread in signal processing and play an important role in blind signal separation, array processing, and biomedical signal processing, among others. One key strength of tensors is that their decompositions are unique under mild conditions, which allows the recovery of features or source signals. In several applications, such as classification, we wish to compare factor matrices of the decompositions. Though this is possible by first computing the tensor decompositions and subsequently comparing the factors, these decompositions are often computationally expensive. In this paper, we present a similarity method that indicates whether the factors in two modes are essentially equal without explicitly computing them. Essential equality conditions, which ensure the theoretical validity of our approach, are provided for various underlying tensor decompositions. The developed algorithm provides a computationally efficient way to compare factors. The method is illustrated in a context of emitter movement detection and fluorescence data analysis. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2017.2786208 |