Loading…

Learning to Reason: End-to-End Module Networks for Visual Question Answering

Natural language questions are inherently compositional, and many are most easily answered by reasoning about their decomposition into modular sub-problems. For example, to answer "is there an equal number of balls and boxes?" we can look for balls, look for boxes, count them, and compare...

Full description

Saved in:
Bibliographic Details
Main Authors: Ronghang Hu, Andreas, Jacob, Rohrbach, Marcus, Darrell, Trevor, Saenko, Kate
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c284t-a8a20fb5a2b79653c192fd6e4f03171522a8c678420e8990ce49e131406dcef13
cites
container_end_page 813
container_issue
container_start_page 804
container_title
container_volume
creator Ronghang Hu
Andreas, Jacob
Rohrbach, Marcus
Darrell, Trevor
Saenko, Kate
description Natural language questions are inherently compositional, and many are most easily answered by reasoning about their decomposition into modular sub-problems. For example, to answer "is there an equal number of balls and boxes?" we can look for balls, look for boxes, count them, and compare the results. The recently proposed Neural Module Network (NMN) architecture [3, 2] implements this approach to question answering by parsing questions into linguistic substructures and assembling question-specific deep networks from smaller modules that each solve one subtask. However, existing NMN implementations rely on brittle off-the-shelf parsers, and are restricted to the module configurations proposed by these parsers rather than learning them from data. In this paper, we propose End-to-End Module Networks (N2NMNs), which learn to reason by directly predicting instance-specific network layouts without the aid of a parser. Our model learns to generate network structures (by imitating expert demonstrations) while simultaneously learning network parameters (using the downstream task loss). Experimental results on the new CLEVR dataset targeted at compositional question answering show that N2NMNs achieve an error reduction of nearly 50% relative to state-of-the-art attentional approaches, while discovering interpretable network architectures specialized for each question.
doi_str_mv 10.1109/ICCV.2017.93
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8237355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8237355</ieee_id><sourcerecordid>8237355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-a8a20fb5a2b79653c192fd6e4f03171522a8c678420e8990ce49e131406dcef13</originalsourceid><addsrcrecordid>eNotzE1LwzAYAOAoCM65mzcv-QOtb_I2X95GmXNQFUV3HVn7Vqo1kaZl-O8d6Om5PYxdCciFAHezKcttLkGY3OEJWzhjhUKrBaB0p2wm0UJmFBTn7CKlDwB00uoZqyryQ-jCOx8jfyGfYrjlq9BkY8yO8IfYTD3xRxoPcfhMvI0D33Zp8j1_niiNXQx8GdKBhuNxyc5a3yda_Dtnb3er1_I-q57Wm3JZZbW0xZh56yW0e-Xl3jitsBZOto2mogUURigpva21sYUEss5BTYUjgaIA3dTUCpyz67-3I6Ld99B9-eFnZyUaVAp_AUHqS6Y</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning to Reason: End-to-End Module Networks for Visual Question Answering</title><source>IEEE Xplore All Conference Series</source><creator>Ronghang Hu ; Andreas, Jacob ; Rohrbach, Marcus ; Darrell, Trevor ; Saenko, Kate</creator><creatorcontrib>Ronghang Hu ; Andreas, Jacob ; Rohrbach, Marcus ; Darrell, Trevor ; Saenko, Kate</creatorcontrib><description>Natural language questions are inherently compositional, and many are most easily answered by reasoning about their decomposition into modular sub-problems. For example, to answer "is there an equal number of balls and boxes?" we can look for balls, look for boxes, count them, and compare the results. The recently proposed Neural Module Network (NMN) architecture [3, 2] implements this approach to question answering by parsing questions into linguistic substructures and assembling question-specific deep networks from smaller modules that each solve one subtask. However, existing NMN implementations rely on brittle off-the-shelf parsers, and are restricted to the module configurations proposed by these parsers rather than learning them from data. In this paper, we propose End-to-End Module Networks (N2NMNs), which learn to reason by directly predicting instance-specific network layouts without the aid of a parser. Our model learns to generate network structures (by imitating expert demonstrations) while simultaneously learning network parameters (using the downstream task loss). Experimental results on the new CLEVR dataset targeted at compositional question answering show that N2NMNs achieve an error reduction of nearly 50% relative to state-of-the-art attentional approaches, while discovering interpretable network architectures specialized for each question.</description><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 9781538610329</identifier><identifier>EISBN: 1538610329</identifier><identifier>DOI: 10.1109/ICCV.2017.93</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cognition ; Knowledge discovery ; Layout ; Neural networks ; Pragmatics ; Predictive models ; Visualization</subject><ispartof>2017 IEEE International Conference on Computer Vision (ICCV), 2017, p.804-813</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-a8a20fb5a2b79653c192fd6e4f03171522a8c678420e8990ce49e131406dcef13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8237355$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8237355$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ronghang Hu</creatorcontrib><creatorcontrib>Andreas, Jacob</creatorcontrib><creatorcontrib>Rohrbach, Marcus</creatorcontrib><creatorcontrib>Darrell, Trevor</creatorcontrib><creatorcontrib>Saenko, Kate</creatorcontrib><title>Learning to Reason: End-to-End Module Networks for Visual Question Answering</title><title>2017 IEEE International Conference on Computer Vision (ICCV)</title><addtitle>ICCV</addtitle><description>Natural language questions are inherently compositional, and many are most easily answered by reasoning about their decomposition into modular sub-problems. For example, to answer "is there an equal number of balls and boxes?" we can look for balls, look for boxes, count them, and compare the results. The recently proposed Neural Module Network (NMN) architecture [3, 2] implements this approach to question answering by parsing questions into linguistic substructures and assembling question-specific deep networks from smaller modules that each solve one subtask. However, existing NMN implementations rely on brittle off-the-shelf parsers, and are restricted to the module configurations proposed by these parsers rather than learning them from data. In this paper, we propose End-to-End Module Networks (N2NMNs), which learn to reason by directly predicting instance-specific network layouts without the aid of a parser. Our model learns to generate network structures (by imitating expert demonstrations) while simultaneously learning network parameters (using the downstream task loss). Experimental results on the new CLEVR dataset targeted at compositional question answering show that N2NMNs achieve an error reduction of nearly 50% relative to state-of-the-art attentional approaches, while discovering interpretable network architectures specialized for each question.</description><subject>Cognition</subject><subject>Knowledge discovery</subject><subject>Layout</subject><subject>Neural networks</subject><subject>Pragmatics</subject><subject>Predictive models</subject><subject>Visualization</subject><issn>2380-7504</issn><isbn>9781538610329</isbn><isbn>1538610329</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzE1LwzAYAOAoCM65mzcv-QOtb_I2X95GmXNQFUV3HVn7Vqo1kaZl-O8d6Om5PYxdCciFAHezKcttLkGY3OEJWzhjhUKrBaB0p2wm0UJmFBTn7CKlDwB00uoZqyryQ-jCOx8jfyGfYrjlq9BkY8yO8IfYTD3xRxoPcfhMvI0D33Zp8j1_niiNXQx8GdKBhuNxyc5a3yda_Dtnb3er1_I-q57Wm3JZZbW0xZh56yW0e-Xl3jitsBZOto2mogUURigpva21sYUEss5BTYUjgaIA3dTUCpyz67-3I6Ld99B9-eFnZyUaVAp_AUHqS6Y</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Ronghang Hu</creator><creator>Andreas, Jacob</creator><creator>Rohrbach, Marcus</creator><creator>Darrell, Trevor</creator><creator>Saenko, Kate</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201710</creationdate><title>Learning to Reason: End-to-End Module Networks for Visual Question Answering</title><author>Ronghang Hu ; Andreas, Jacob ; Rohrbach, Marcus ; Darrell, Trevor ; Saenko, Kate</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-a8a20fb5a2b79653c192fd6e4f03171522a8c678420e8990ce49e131406dcef13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cognition</topic><topic>Knowledge discovery</topic><topic>Layout</topic><topic>Neural networks</topic><topic>Pragmatics</topic><topic>Predictive models</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Ronghang Hu</creatorcontrib><creatorcontrib>Andreas, Jacob</creatorcontrib><creatorcontrib>Rohrbach, Marcus</creatorcontrib><creatorcontrib>Darrell, Trevor</creatorcontrib><creatorcontrib>Saenko, Kate</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ronghang Hu</au><au>Andreas, Jacob</au><au>Rohrbach, Marcus</au><au>Darrell, Trevor</au><au>Saenko, Kate</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning to Reason: End-to-End Module Networks for Visual Question Answering</atitle><btitle>2017 IEEE International Conference on Computer Vision (ICCV)</btitle><stitle>ICCV</stitle><date>2017-10</date><risdate>2017</risdate><spage>804</spage><epage>813</epage><pages>804-813</pages><eissn>2380-7504</eissn><eisbn>9781538610329</eisbn><eisbn>1538610329</eisbn><coden>IEEPAD</coden><abstract>Natural language questions are inherently compositional, and many are most easily answered by reasoning about their decomposition into modular sub-problems. For example, to answer "is there an equal number of balls and boxes?" we can look for balls, look for boxes, count them, and compare the results. The recently proposed Neural Module Network (NMN) architecture [3, 2] implements this approach to question answering by parsing questions into linguistic substructures and assembling question-specific deep networks from smaller modules that each solve one subtask. However, existing NMN implementations rely on brittle off-the-shelf parsers, and are restricted to the module configurations proposed by these parsers rather than learning them from data. In this paper, we propose End-to-End Module Networks (N2NMNs), which learn to reason by directly predicting instance-specific network layouts without the aid of a parser. Our model learns to generate network structures (by imitating expert demonstrations) while simultaneously learning network parameters (using the downstream task loss). Experimental results on the new CLEVR dataset targeted at compositional question answering show that N2NMNs achieve an error reduction of nearly 50% relative to state-of-the-art attentional approaches, while discovering interpretable network architectures specialized for each question.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2017.93</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2380-7504
ispartof 2017 IEEE International Conference on Computer Vision (ICCV), 2017, p.804-813
issn 2380-7504
language eng
recordid cdi_ieee_primary_8237355
source IEEE Xplore All Conference Series
subjects Cognition
Knowledge discovery
Layout
Neural networks
Pragmatics
Predictive models
Visualization
title Learning to Reason: End-to-End Module Networks for Visual Question Answering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A35%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20to%20Reason:%20End-to-End%20Module%20Networks%20for%20Visual%20Question%20Answering&rft.btitle=2017%20IEEE%20International%20Conference%20on%20Computer%20Vision%20(ICCV)&rft.au=Ronghang%20Hu&rft.date=2017-10&rft.spage=804&rft.epage=813&rft.pages=804-813&rft.eissn=2380-7504&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICCV.2017.93&rft.eisbn=9781538610329&rft.eisbn_list=1538610329&rft_dat=%3Cieee_CHZPO%3E8237355%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c284t-a8a20fb5a2b79653c192fd6e4f03171522a8c678420e8990ce49e131406dcef13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8237355&rfr_iscdi=true