Loading…

Constrained Convolutional Sparse Coding for Parametric Based Reconstruction of Line Drawings

Convolutional sparse coding (CSC) plays an essential role in many computer vision applications ranging from image compression to deep learning. In this work, we spot the light on a new application where CSC can effectively serve, namely line drawing analysis. The process of drawing a line drawing ca...

Full description

Saved in:
Bibliographic Details
Main Authors: Shaheen, Sara, Affara, Lama, Ghanem, Bernard
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4442
container_issue
container_start_page 4434
container_title
container_volume
creator Shaheen, Sara
Affara, Lama
Ghanem, Bernard
description Convolutional sparse coding (CSC) plays an essential role in many computer vision applications ranging from image compression to deep learning. In this work, we spot the light on a new application where CSC can effectively serve, namely line drawing analysis. The process of drawing a line drawing can be approximated as the sparse spatial localization of a number of typical basic strokes, which in turn can be cast as a non-standard CSC model that considers the line drawing formation process from parametric curves. These curves are learned to optimize the fit between the model and a specific set of line drawings. Parametric representation of sketches is vital in enabling automatic sketch analysis, synthesis and manipulation. A couple of sketch manipulation examples are demonstrated in this work. Consequently, our novel method is expected to provide a reliable and automatic method for parametric sketch description. Through experiments, we empirically validate the convergence of our method to a feasible solution.
doi_str_mv 10.1109/ICCV.2017.474
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8237736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8237736</ieee_id><sourcerecordid>8237736</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ea9fe3ad633d19cc86aa198dc65928a30b36f56ab4513371cf19da9895eb93fe3</originalsourceid><addsrcrecordid>eNotzktLxDAUBeAoCI7jLF25yR9oTXqb11Lra2BA8bUShtsklUinHZKO4r83Plb3cOA7XEJOOCs5Z-Zs2TQvZcW4KmtV75GFUZoL0JIzqMw-mVWgWaEEqw_JUUrvjIGptJyR12Yc0hQxDN7RnD_GfjeFccCePm4xJp9LF4Y32o2R3mPEjZ9isPQCUwYP3v7ynf0xdOzoKg_Ry4if2aRjctBhn_zi_87J8_XVU3NbrO5uls35qghcianwaDoP6CSA48ZaLRG50c5KkZ9EYC3ITkhsa8EBFLcdNw6NNsK3BjKdk9O_3eC9X29j2GD8WusKlAIJ32YDU8s</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Constrained Convolutional Sparse Coding for Parametric Based Reconstruction of Line Drawings</title><source>IEEE Xplore All Conference Series</source><creator>Shaheen, Sara ; Affara, Lama ; Ghanem, Bernard</creator><creatorcontrib>Shaheen, Sara ; Affara, Lama ; Ghanem, Bernard</creatorcontrib><description>Convolutional sparse coding (CSC) plays an essential role in many computer vision applications ranging from image compression to deep learning. In this work, we spot the light on a new application where CSC can effectively serve, namely line drawing analysis. The process of drawing a line drawing can be approximated as the sparse spatial localization of a number of typical basic strokes, which in turn can be cast as a non-standard CSC model that considers the line drawing formation process from parametric curves. These curves are learned to optimize the fit between the model and a specific set of line drawings. Parametric representation of sketches is vital in enabling automatic sketch analysis, synthesis and manipulation. A couple of sketch manipulation examples are demonstrated in this work. Consequently, our novel method is expected to provide a reliable and automatic method for parametric sketch description. Through experiments, we empirically validate the convergence of our method to a feasible solution.</description><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 9781538610329</identifier><identifier>EISBN: 1538610329</identifier><identifier>DOI: 10.1109/ICCV.2017.474</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convolution ; Convolutional codes ; Dictionaries ; Encoding ; Image reconstruction ; Optimization</subject><ispartof>2017 IEEE International Conference on Computer Vision (ICCV), 2017, p.4434-4442</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8237736$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8237736$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shaheen, Sara</creatorcontrib><creatorcontrib>Affara, Lama</creatorcontrib><creatorcontrib>Ghanem, Bernard</creatorcontrib><title>Constrained Convolutional Sparse Coding for Parametric Based Reconstruction of Line Drawings</title><title>2017 IEEE International Conference on Computer Vision (ICCV)</title><addtitle>ICCV</addtitle><description>Convolutional sparse coding (CSC) plays an essential role in many computer vision applications ranging from image compression to deep learning. In this work, we spot the light on a new application where CSC can effectively serve, namely line drawing analysis. The process of drawing a line drawing can be approximated as the sparse spatial localization of a number of typical basic strokes, which in turn can be cast as a non-standard CSC model that considers the line drawing formation process from parametric curves. These curves are learned to optimize the fit between the model and a specific set of line drawings. Parametric representation of sketches is vital in enabling automatic sketch analysis, synthesis and manipulation. A couple of sketch manipulation examples are demonstrated in this work. Consequently, our novel method is expected to provide a reliable and automatic method for parametric sketch description. Through experiments, we empirically validate the convergence of our method to a feasible solution.</description><subject>Convolution</subject><subject>Convolutional codes</subject><subject>Dictionaries</subject><subject>Encoding</subject><subject>Image reconstruction</subject><subject>Optimization</subject><issn>2380-7504</issn><isbn>9781538610329</isbn><isbn>1538610329</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzktLxDAUBeAoCI7jLF25yR9oTXqb11Lra2BA8bUShtsklUinHZKO4r83Plb3cOA7XEJOOCs5Z-Zs2TQvZcW4KmtV75GFUZoL0JIzqMw-mVWgWaEEqw_JUUrvjIGptJyR12Yc0hQxDN7RnD_GfjeFccCePm4xJp9LF4Y32o2R3mPEjZ9isPQCUwYP3v7ynf0xdOzoKg_Ry4if2aRjctBhn_zi_87J8_XVU3NbrO5uls35qghcianwaDoP6CSA48ZaLRG50c5KkZ9EYC3ITkhsa8EBFLcdNw6NNsK3BjKdk9O_3eC9X29j2GD8WusKlAIJ32YDU8s</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Shaheen, Sara</creator><creator>Affara, Lama</creator><creator>Ghanem, Bernard</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201710</creationdate><title>Constrained Convolutional Sparse Coding for Parametric Based Reconstruction of Line Drawings</title><author>Shaheen, Sara ; Affara, Lama ; Ghanem, Bernard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ea9fe3ad633d19cc86aa198dc65928a30b36f56ab4513371cf19da9895eb93fe3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Convolution</topic><topic>Convolutional codes</topic><topic>Dictionaries</topic><topic>Encoding</topic><topic>Image reconstruction</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Shaheen, Sara</creatorcontrib><creatorcontrib>Affara, Lama</creatorcontrib><creatorcontrib>Ghanem, Bernard</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shaheen, Sara</au><au>Affara, Lama</au><au>Ghanem, Bernard</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Constrained Convolutional Sparse Coding for Parametric Based Reconstruction of Line Drawings</atitle><btitle>2017 IEEE International Conference on Computer Vision (ICCV)</btitle><stitle>ICCV</stitle><date>2017-10</date><risdate>2017</risdate><spage>4434</spage><epage>4442</epage><pages>4434-4442</pages><eissn>2380-7504</eissn><eisbn>9781538610329</eisbn><eisbn>1538610329</eisbn><coden>IEEPAD</coden><abstract>Convolutional sparse coding (CSC) plays an essential role in many computer vision applications ranging from image compression to deep learning. In this work, we spot the light on a new application where CSC can effectively serve, namely line drawing analysis. The process of drawing a line drawing can be approximated as the sparse spatial localization of a number of typical basic strokes, which in turn can be cast as a non-standard CSC model that considers the line drawing formation process from parametric curves. These curves are learned to optimize the fit between the model and a specific set of line drawings. Parametric representation of sketches is vital in enabling automatic sketch analysis, synthesis and manipulation. A couple of sketch manipulation examples are demonstrated in this work. Consequently, our novel method is expected to provide a reliable and automatic method for parametric sketch description. Through experiments, we empirically validate the convergence of our method to a feasible solution.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2017.474</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2380-7504
ispartof 2017 IEEE International Conference on Computer Vision (ICCV), 2017, p.4434-4442
issn 2380-7504
language eng
recordid cdi_ieee_primary_8237736
source IEEE Xplore All Conference Series
subjects Convolution
Convolutional codes
Dictionaries
Encoding
Image reconstruction
Optimization
title Constrained Convolutional Sparse Coding for Parametric Based Reconstruction of Line Drawings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A20%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Constrained%20Convolutional%20Sparse%20Coding%20for%20Parametric%20Based%20Reconstruction%20of%20Line%20Drawings&rft.btitle=2017%20IEEE%20International%20Conference%20on%20Computer%20Vision%20(ICCV)&rft.au=Shaheen,%20Sara&rft.date=2017-10&rft.spage=4434&rft.epage=4442&rft.pages=4434-4442&rft.eissn=2380-7504&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICCV.2017.474&rft.eisbn=9781538610329&rft.eisbn_list=1538610329&rft_dat=%3Cieee_CHZPO%3E8237736%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-ea9fe3ad633d19cc86aa198dc65928a30b36f56ab4513371cf19da9895eb93fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8237736&rfr_iscdi=true