Loading…
Constrained Convolutional Sparse Coding for Parametric Based Reconstruction of Line Drawings
Convolutional sparse coding (CSC) plays an essential role in many computer vision applications ranging from image compression to deep learning. In this work, we spot the light on a new application where CSC can effectively serve, namely line drawing analysis. The process of drawing a line drawing ca...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4442 |
container_issue | |
container_start_page | 4434 |
container_title | |
container_volume | |
creator | Shaheen, Sara Affara, Lama Ghanem, Bernard |
description | Convolutional sparse coding (CSC) plays an essential role in many computer vision applications ranging from image compression to deep learning. In this work, we spot the light on a new application where CSC can effectively serve, namely line drawing analysis. The process of drawing a line drawing can be approximated as the sparse spatial localization of a number of typical basic strokes, which in turn can be cast as a non-standard CSC model that considers the line drawing formation process from parametric curves. These curves are learned to optimize the fit between the model and a specific set of line drawings. Parametric representation of sketches is vital in enabling automatic sketch analysis, synthesis and manipulation. A couple of sketch manipulation examples are demonstrated in this work. Consequently, our novel method is expected to provide a reliable and automatic method for parametric sketch description. Through experiments, we empirically validate the convergence of our method to a feasible solution. |
doi_str_mv | 10.1109/ICCV.2017.474 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8237736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8237736</ieee_id><sourcerecordid>8237736</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ea9fe3ad633d19cc86aa198dc65928a30b36f56ab4513371cf19da9895eb93fe3</originalsourceid><addsrcrecordid>eNotzktLxDAUBeAoCI7jLF25yR9oTXqb11Lra2BA8bUShtsklUinHZKO4r83Plb3cOA7XEJOOCs5Z-Zs2TQvZcW4KmtV75GFUZoL0JIzqMw-mVWgWaEEqw_JUUrvjIGptJyR12Yc0hQxDN7RnD_GfjeFccCePm4xJp9LF4Y32o2R3mPEjZ9isPQCUwYP3v7ynf0xdOzoKg_Ry4if2aRjctBhn_zi_87J8_XVU3NbrO5uls35qghcianwaDoP6CSA48ZaLRG50c5KkZ9EYC3ITkhsa8EBFLcdNw6NNsK3BjKdk9O_3eC9X29j2GD8WusKlAIJ32YDU8s</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Constrained Convolutional Sparse Coding for Parametric Based Reconstruction of Line Drawings</title><source>IEEE Xplore All Conference Series</source><creator>Shaheen, Sara ; Affara, Lama ; Ghanem, Bernard</creator><creatorcontrib>Shaheen, Sara ; Affara, Lama ; Ghanem, Bernard</creatorcontrib><description>Convolutional sparse coding (CSC) plays an essential role in many computer vision applications ranging from image compression to deep learning. In this work, we spot the light on a new application where CSC can effectively serve, namely line drawing analysis. The process of drawing a line drawing can be approximated as the sparse spatial localization of a number of typical basic strokes, which in turn can be cast as a non-standard CSC model that considers the line drawing formation process from parametric curves. These curves are learned to optimize the fit between the model and a specific set of line drawings. Parametric representation of sketches is vital in enabling automatic sketch analysis, synthesis and manipulation. A couple of sketch manipulation examples are demonstrated in this work. Consequently, our novel method is expected to provide a reliable and automatic method for parametric sketch description. Through experiments, we empirically validate the convergence of our method to a feasible solution.</description><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 9781538610329</identifier><identifier>EISBN: 1538610329</identifier><identifier>DOI: 10.1109/ICCV.2017.474</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convolution ; Convolutional codes ; Dictionaries ; Encoding ; Image reconstruction ; Optimization</subject><ispartof>2017 IEEE International Conference on Computer Vision (ICCV), 2017, p.4434-4442</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8237736$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8237736$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shaheen, Sara</creatorcontrib><creatorcontrib>Affara, Lama</creatorcontrib><creatorcontrib>Ghanem, Bernard</creatorcontrib><title>Constrained Convolutional Sparse Coding for Parametric Based Reconstruction of Line Drawings</title><title>2017 IEEE International Conference on Computer Vision (ICCV)</title><addtitle>ICCV</addtitle><description>Convolutional sparse coding (CSC) plays an essential role in many computer vision applications ranging from image compression to deep learning. In this work, we spot the light on a new application where CSC can effectively serve, namely line drawing analysis. The process of drawing a line drawing can be approximated as the sparse spatial localization of a number of typical basic strokes, which in turn can be cast as a non-standard CSC model that considers the line drawing formation process from parametric curves. These curves are learned to optimize the fit between the model and a specific set of line drawings. Parametric representation of sketches is vital in enabling automatic sketch analysis, synthesis and manipulation. A couple of sketch manipulation examples are demonstrated in this work. Consequently, our novel method is expected to provide a reliable and automatic method for parametric sketch description. Through experiments, we empirically validate the convergence of our method to a feasible solution.</description><subject>Convolution</subject><subject>Convolutional codes</subject><subject>Dictionaries</subject><subject>Encoding</subject><subject>Image reconstruction</subject><subject>Optimization</subject><issn>2380-7504</issn><isbn>9781538610329</isbn><isbn>1538610329</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzktLxDAUBeAoCI7jLF25yR9oTXqb11Lra2BA8bUShtsklUinHZKO4r83Plb3cOA7XEJOOCs5Z-Zs2TQvZcW4KmtV75GFUZoL0JIzqMw-mVWgWaEEqw_JUUrvjIGptJyR12Yc0hQxDN7RnD_GfjeFccCePm4xJp9LF4Y32o2R3mPEjZ9isPQCUwYP3v7ynf0xdOzoKg_Ry4if2aRjctBhn_zi_87J8_XVU3NbrO5uls35qghcianwaDoP6CSA48ZaLRG50c5KkZ9EYC3ITkhsa8EBFLcdNw6NNsK3BjKdk9O_3eC9X29j2GD8WusKlAIJ32YDU8s</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Shaheen, Sara</creator><creator>Affara, Lama</creator><creator>Ghanem, Bernard</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201710</creationdate><title>Constrained Convolutional Sparse Coding for Parametric Based Reconstruction of Line Drawings</title><author>Shaheen, Sara ; Affara, Lama ; Ghanem, Bernard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ea9fe3ad633d19cc86aa198dc65928a30b36f56ab4513371cf19da9895eb93fe3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Convolution</topic><topic>Convolutional codes</topic><topic>Dictionaries</topic><topic>Encoding</topic><topic>Image reconstruction</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Shaheen, Sara</creatorcontrib><creatorcontrib>Affara, Lama</creatorcontrib><creatorcontrib>Ghanem, Bernard</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shaheen, Sara</au><au>Affara, Lama</au><au>Ghanem, Bernard</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Constrained Convolutional Sparse Coding for Parametric Based Reconstruction of Line Drawings</atitle><btitle>2017 IEEE International Conference on Computer Vision (ICCV)</btitle><stitle>ICCV</stitle><date>2017-10</date><risdate>2017</risdate><spage>4434</spage><epage>4442</epage><pages>4434-4442</pages><eissn>2380-7504</eissn><eisbn>9781538610329</eisbn><eisbn>1538610329</eisbn><coden>IEEPAD</coden><abstract>Convolutional sparse coding (CSC) plays an essential role in many computer vision applications ranging from image compression to deep learning. In this work, we spot the light on a new application where CSC can effectively serve, namely line drawing analysis. The process of drawing a line drawing can be approximated as the sparse spatial localization of a number of typical basic strokes, which in turn can be cast as a non-standard CSC model that considers the line drawing formation process from parametric curves. These curves are learned to optimize the fit between the model and a specific set of line drawings. Parametric representation of sketches is vital in enabling automatic sketch analysis, synthesis and manipulation. A couple of sketch manipulation examples are demonstrated in this work. Consequently, our novel method is expected to provide a reliable and automatic method for parametric sketch description. Through experiments, we empirically validate the convergence of our method to a feasible solution.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2017.474</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2380-7504 |
ispartof | 2017 IEEE International Conference on Computer Vision (ICCV), 2017, p.4434-4442 |
issn | 2380-7504 |
language | eng |
recordid | cdi_ieee_primary_8237736 |
source | IEEE Xplore All Conference Series |
subjects | Convolution Convolutional codes Dictionaries Encoding Image reconstruction Optimization |
title | Constrained Convolutional Sparse Coding for Parametric Based Reconstruction of Line Drawings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A20%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Constrained%20Convolutional%20Sparse%20Coding%20for%20Parametric%20Based%20Reconstruction%20of%20Line%20Drawings&rft.btitle=2017%20IEEE%20International%20Conference%20on%20Computer%20Vision%20(ICCV)&rft.au=Shaheen,%20Sara&rft.date=2017-10&rft.spage=4434&rft.epage=4442&rft.pages=4434-4442&rft.eissn=2380-7504&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICCV.2017.474&rft.eisbn=9781538610329&rft.eisbn_list=1538610329&rft_dat=%3Cieee_CHZPO%3E8237736%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-ea9fe3ad633d19cc86aa198dc65928a30b36f56ab4513371cf19da9895eb93fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8237736&rfr_iscdi=true |