Loading…

EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis

Single image super-resolution is the task of inferring a high-resolution image from a single low-resolution input. Traditionally, the performance of algorithms for this task is measured using pixel-wise reconstruction measures such as peak signal-to-noise ratio (PSNR) which have been shown to correl...

Full description

Saved in:
Bibliographic Details
Main Authors: Sajjadi, Mehdi S. M., Scholkopf, Bernhard, Hirsch, Michael
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4510
container_issue
container_start_page 4501
container_title
container_volume
creator Sajjadi, Mehdi S. M.
Scholkopf, Bernhard
Hirsch, Michael
description Single image super-resolution is the task of inferring a high-resolution image from a single low-resolution input. Traditionally, the performance of algorithms for this task is measured using pixel-wise reconstruction measures such as peak signal-to-noise ratio (PSNR) which have been shown to correlate poorly with the human perception of image quality. As a result, algorithms minimizing these metrics tend to produce over-smoothed images that lack highfrequency textures and do not look natural despite yielding high PSNR values.,,We propose a novel application of automated texture synthesis in combination with a perceptual loss focusing on creating realistic textures rather than optimizing for a pixelaccurate reproduction of ground truth images during training. By using feed-forward fully convolutional neural networks in an adversarial training setting, we achieve a significant boost in image quality at high magnification ratios. Extensive experiments on a number of datasets show the effectiveness of our approach, yielding state-of-the-art results in both quantitative and qualitative benchmarks.
doi_str_mv 10.1109/ICCV.2017.481
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8237743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8237743</ieee_id><sourcerecordid>8237743</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a4bfeb569108c2bda98d94b09b1e69d8422845d7ab627e96d247c26c748f3b653</originalsourceid><addsrcrecordid>eNotzMtKw0AYQOFREKy1S1du5gUS55a5uCuh1kJVsNFtmUn-JCO5lMwE7Nsr6OpsPg5Cd5SklBLzsMvzz5QRqlKh6QVaGaVpxrWkhDNziRaMa5KojIhrdBPCFyHcMC0X6GUztHYo4RXiIz74oekA73rbAD7MJ5iSdwhjN0c_Drhop3FuWrye49jbCBUu4DvO0y89D7GF4MMtuqptF2D13yX6eNoU-XOyf9vu8vU-8VRlMbHC1eAyaSjRJXOVNboywhHjKEhTacGYFlmlrJNMgZEVE6pkslRC19zJjC_R_d_XA8DxNPneTuejZlwpwfkPhBZNgQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis</title><source>IEEE Xplore All Conference Series</source><creator>Sajjadi, Mehdi S. M. ; Scholkopf, Bernhard ; Hirsch, Michael</creator><creatorcontrib>Sajjadi, Mehdi S. M. ; Scholkopf, Bernhard ; Hirsch, Michael</creatorcontrib><description>Single image super-resolution is the task of inferring a high-resolution image from a single low-resolution input. Traditionally, the performance of algorithms for this task is measured using pixel-wise reconstruction measures such as peak signal-to-noise ratio (PSNR) which have been shown to correlate poorly with the human perception of image quality. As a result, algorithms minimizing these metrics tend to produce over-smoothed images that lack highfrequency textures and do not look natural despite yielding high PSNR values.,,We propose a novel application of automated texture synthesis in combination with a perceptual loss focusing on creating realistic textures rather than optimizing for a pixelaccurate reproduction of ground truth images during training. By using feed-forward fully convolutional neural networks in an adversarial training setting, we achieve a significant boost in image quality at high magnification ratios. Extensive experiments on a number of datasets show the effectiveness of our approach, yielding state-of-the-art results in both quantitative and qualitative benchmarks.</description><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 9781538610329</identifier><identifier>EISBN: 1538610329</identifier><identifier>DOI: 10.1109/ICCV.2017.481</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convolution ; Image resolution ; Interpolation ; Signal resolution ; Training</subject><ispartof>2017 IEEE International Conference on Computer Vision (ICCV), 2017, p.4501-4510</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8237743$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8237743$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sajjadi, Mehdi S. M.</creatorcontrib><creatorcontrib>Scholkopf, Bernhard</creatorcontrib><creatorcontrib>Hirsch, Michael</creatorcontrib><title>EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis</title><title>2017 IEEE International Conference on Computer Vision (ICCV)</title><addtitle>ICCV</addtitle><description>Single image super-resolution is the task of inferring a high-resolution image from a single low-resolution input. Traditionally, the performance of algorithms for this task is measured using pixel-wise reconstruction measures such as peak signal-to-noise ratio (PSNR) which have been shown to correlate poorly with the human perception of image quality. As a result, algorithms minimizing these metrics tend to produce over-smoothed images that lack highfrequency textures and do not look natural despite yielding high PSNR values.,,We propose a novel application of automated texture synthesis in combination with a perceptual loss focusing on creating realistic textures rather than optimizing for a pixelaccurate reproduction of ground truth images during training. By using feed-forward fully convolutional neural networks in an adversarial training setting, we achieve a significant boost in image quality at high magnification ratios. Extensive experiments on a number of datasets show the effectiveness of our approach, yielding state-of-the-art results in both quantitative and qualitative benchmarks.</description><subject>Convolution</subject><subject>Image resolution</subject><subject>Interpolation</subject><subject>Signal resolution</subject><subject>Training</subject><issn>2380-7504</issn><isbn>9781538610329</isbn><isbn>1538610329</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzMtKw0AYQOFREKy1S1du5gUS55a5uCuh1kJVsNFtmUn-JCO5lMwE7Nsr6OpsPg5Cd5SklBLzsMvzz5QRqlKh6QVaGaVpxrWkhDNziRaMa5KojIhrdBPCFyHcMC0X6GUztHYo4RXiIz74oekA73rbAD7MJ5iSdwhjN0c_Drhop3FuWrye49jbCBUu4DvO0y89D7GF4MMtuqptF2D13yX6eNoU-XOyf9vu8vU-8VRlMbHC1eAyaSjRJXOVNboywhHjKEhTacGYFlmlrJNMgZEVE6pkslRC19zJjC_R_d_XA8DxNPneTuejZlwpwfkPhBZNgQ</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Sajjadi, Mehdi S. M.</creator><creator>Scholkopf, Bernhard</creator><creator>Hirsch, Michael</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201710</creationdate><title>EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis</title><author>Sajjadi, Mehdi S. M. ; Scholkopf, Bernhard ; Hirsch, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a4bfeb569108c2bda98d94b09b1e69d8422845d7ab627e96d247c26c748f3b653</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Convolution</topic><topic>Image resolution</topic><topic>Interpolation</topic><topic>Signal resolution</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Sajjadi, Mehdi S. M.</creatorcontrib><creatorcontrib>Scholkopf, Bernhard</creatorcontrib><creatorcontrib>Hirsch, Michael</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Explore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sajjadi, Mehdi S. M.</au><au>Scholkopf, Bernhard</au><au>Hirsch, Michael</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis</atitle><btitle>2017 IEEE International Conference on Computer Vision (ICCV)</btitle><stitle>ICCV</stitle><date>2017-10</date><risdate>2017</risdate><spage>4501</spage><epage>4510</epage><pages>4501-4510</pages><eissn>2380-7504</eissn><eisbn>9781538610329</eisbn><eisbn>1538610329</eisbn><coden>IEEPAD</coden><abstract>Single image super-resolution is the task of inferring a high-resolution image from a single low-resolution input. Traditionally, the performance of algorithms for this task is measured using pixel-wise reconstruction measures such as peak signal-to-noise ratio (PSNR) which have been shown to correlate poorly with the human perception of image quality. As a result, algorithms minimizing these metrics tend to produce over-smoothed images that lack highfrequency textures and do not look natural despite yielding high PSNR values.,,We propose a novel application of automated texture synthesis in combination with a perceptual loss focusing on creating realistic textures rather than optimizing for a pixelaccurate reproduction of ground truth images during training. By using feed-forward fully convolutional neural networks in an adversarial training setting, we achieve a significant boost in image quality at high magnification ratios. Extensive experiments on a number of datasets show the effectiveness of our approach, yielding state-of-the-art results in both quantitative and qualitative benchmarks.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2017.481</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2380-7504
ispartof 2017 IEEE International Conference on Computer Vision (ICCV), 2017, p.4501-4510
issn 2380-7504
language eng
recordid cdi_ieee_primary_8237743
source IEEE Xplore All Conference Series
subjects Convolution
Image resolution
Interpolation
Signal resolution
Training
title EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A44%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=EnhanceNet:%20Single%20Image%20Super-Resolution%20Through%20Automated%20Texture%20Synthesis&rft.btitle=2017%20IEEE%20International%20Conference%20on%20Computer%20Vision%20(ICCV)&rft.au=Sajjadi,%20Mehdi%20S.%20M.&rft.date=2017-10&rft.spage=4501&rft.epage=4510&rft.pages=4501-4510&rft.eissn=2380-7504&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICCV.2017.481&rft.eisbn=9781538610329&rft.eisbn_list=1538610329&rft_dat=%3Cieee_CHZPO%3E8237743%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-a4bfeb569108c2bda98d94b09b1e69d8422845d7ab627e96d247c26c748f3b653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8237743&rfr_iscdi=true