Loading…
AutoDIAL: Automatic Domain Alignment Layers
Classifiers trained on given databases perform poorly when tested on data acquired in different settings. This is explained in domain adaptation through a shift among distributions of the source and target domains. Attempts to align them have traditionally resulted in works reducing the domain shift...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c258t-eec12428e13d41df9e13b12f6d0632053cbc6accfa416c957e492b6bf06832323 |
---|---|
cites | |
container_end_page | 5085 |
container_issue | |
container_start_page | 5077 |
container_title | |
container_volume | |
creator | Carlucci, Fabio Maria Porzi, Lorenzo Caputo, Barbara Ricci, Elisa Bulo, Samuel Rota |
description | Classifiers trained on given databases perform poorly when tested on data acquired in different settings. This is explained in domain adaptation through a shift among distributions of the source and target domains. Attempts to align them have traditionally resulted in works reducing the domain shift by introducing appropriate loss terms, measuring the discrepancies between source and target distributions, in the objective function. Here we take a different route, proposing to align the learned representations by embedding in any given network specific Domain Alignment Layers, designed to match the source and target feature distributions to a reference one. Opposite to previous works which define a priori in which layers adaptation should be performed, our method is able to automatically learn the degree of feature alignment required at different levels of the deep network. Thorough experiments on different public benchmarks, in the unsupervised setting, confirm the power of our approach. |
doi_str_mv | 10.1109/ICCV.2017.542 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8237804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8237804</ieee_id><sourcerecordid>8237804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-eec12428e13d41df9e13b12f6d0632053cbc6accfa416c957e492b6bf06832323</originalsourceid><addsrcrecordid>eNotjD1PwzAUAA0SEqV0ZGLJjhLee_5mi1I-IkXqUlgrx7GRURNQEob-e4JAN9xNx9gNQoEI9r6uqreCAHUhBZ2xjdUGJTcKgZM9ZyviBnItQVyyq2n6AOCWjFqxu_J7_tzWZfOQ_Vbv5uSz7eI0ZOUxvQ99GOascacwTtfsIrrjFDb_XrPXp8d99ZI3u-e6KpvckzRzHoJHEmQC8k5gF-0SLVJUHShOILlvvXLeRydQeSt1EJZa1UZQhtPCmt3-fVMI4fA1pt6Np4Mhrg0I_gO5Bz_q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>AutoDIAL: Automatic Domain Alignment Layers</title><source>IEEE Xplore All Conference Series</source><creator>Carlucci, Fabio Maria ; Porzi, Lorenzo ; Caputo, Barbara ; Ricci, Elisa ; Bulo, Samuel Rota</creator><creatorcontrib>Carlucci, Fabio Maria ; Porzi, Lorenzo ; Caputo, Barbara ; Ricci, Elisa ; Bulo, Samuel Rota</creatorcontrib><description>Classifiers trained on given databases perform poorly when tested on data acquired in different settings. This is explained in domain adaptation through a shift among distributions of the source and target domains. Attempts to align them have traditionally resulted in works reducing the domain shift by introducing appropriate loss terms, measuring the discrepancies between source and target distributions, in the objective function. Here we take a different route, proposing to align the learned representations by embedding in any given network specific Domain Alignment Layers, designed to match the source and target feature distributions to a reference one. Opposite to previous works which define a priori in which layers adaptation should be performed, our method is able to automatically learn the degree of feature alignment required at different levels of the deep network. Thorough experiments on different public benchmarks, in the unsupervised setting, confirm the power of our approach.</description><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 9781538610329</identifier><identifier>EISBN: 1538610329</identifier><identifier>DOI: 10.1109/ICCV.2017.542</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Benchmark testing ; Machine learning ; Optimization ; Training ; Visualization</subject><ispartof>2017 IEEE International Conference on Computer Vision (ICCV), 2017, p.5077-5085</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-eec12428e13d41df9e13b12f6d0632053cbc6accfa416c957e492b6bf06832323</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8237804$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8237804$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Carlucci, Fabio Maria</creatorcontrib><creatorcontrib>Porzi, Lorenzo</creatorcontrib><creatorcontrib>Caputo, Barbara</creatorcontrib><creatorcontrib>Ricci, Elisa</creatorcontrib><creatorcontrib>Bulo, Samuel Rota</creatorcontrib><title>AutoDIAL: Automatic Domain Alignment Layers</title><title>2017 IEEE International Conference on Computer Vision (ICCV)</title><addtitle>ICCV</addtitle><description>Classifiers trained on given databases perform poorly when tested on data acquired in different settings. This is explained in domain adaptation through a shift among distributions of the source and target domains. Attempts to align them have traditionally resulted in works reducing the domain shift by introducing appropriate loss terms, measuring the discrepancies between source and target distributions, in the objective function. Here we take a different route, proposing to align the learned representations by embedding in any given network specific Domain Alignment Layers, designed to match the source and target feature distributions to a reference one. Opposite to previous works which define a priori in which layers adaptation should be performed, our method is able to automatically learn the degree of feature alignment required at different levels of the deep network. Thorough experiments on different public benchmarks, in the unsupervised setting, confirm the power of our approach.</description><subject>Adaptation models</subject><subject>Benchmark testing</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Training</subject><subject>Visualization</subject><issn>2380-7504</issn><isbn>9781538610329</isbn><isbn>1538610329</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjD1PwzAUAA0SEqV0ZGLJjhLee_5mi1I-IkXqUlgrx7GRURNQEob-e4JAN9xNx9gNQoEI9r6uqreCAHUhBZ2xjdUGJTcKgZM9ZyviBnItQVyyq2n6AOCWjFqxu_J7_tzWZfOQ_Vbv5uSz7eI0ZOUxvQ99GOascacwTtfsIrrjFDb_XrPXp8d99ZI3u-e6KpvckzRzHoJHEmQC8k5gF-0SLVJUHShOILlvvXLeRydQeSt1EJZa1UZQhtPCmt3-fVMI4fA1pt6Np4Mhrg0I_gO5Bz_q</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Carlucci, Fabio Maria</creator><creator>Porzi, Lorenzo</creator><creator>Caputo, Barbara</creator><creator>Ricci, Elisa</creator><creator>Bulo, Samuel Rota</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201710</creationdate><title>AutoDIAL: Automatic Domain Alignment Layers</title><author>Carlucci, Fabio Maria ; Porzi, Lorenzo ; Caputo, Barbara ; Ricci, Elisa ; Bulo, Samuel Rota</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-eec12428e13d41df9e13b12f6d0632053cbc6accfa416c957e492b6bf06832323</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation models</topic><topic>Benchmark testing</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Training</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Carlucci, Fabio Maria</creatorcontrib><creatorcontrib>Porzi, Lorenzo</creatorcontrib><creatorcontrib>Caputo, Barbara</creatorcontrib><creatorcontrib>Ricci, Elisa</creatorcontrib><creatorcontrib>Bulo, Samuel Rota</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Carlucci, Fabio Maria</au><au>Porzi, Lorenzo</au><au>Caputo, Barbara</au><au>Ricci, Elisa</au><au>Bulo, Samuel Rota</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>AutoDIAL: Automatic Domain Alignment Layers</atitle><btitle>2017 IEEE International Conference on Computer Vision (ICCV)</btitle><stitle>ICCV</stitle><date>2017-10</date><risdate>2017</risdate><spage>5077</spage><epage>5085</epage><pages>5077-5085</pages><eissn>2380-7504</eissn><eisbn>9781538610329</eisbn><eisbn>1538610329</eisbn><coden>IEEPAD</coden><abstract>Classifiers trained on given databases perform poorly when tested on data acquired in different settings. This is explained in domain adaptation through a shift among distributions of the source and target domains. Attempts to align them have traditionally resulted in works reducing the domain shift by introducing appropriate loss terms, measuring the discrepancies between source and target distributions, in the objective function. Here we take a different route, proposing to align the learned representations by embedding in any given network specific Domain Alignment Layers, designed to match the source and target feature distributions to a reference one. Opposite to previous works which define a priori in which layers adaptation should be performed, our method is able to automatically learn the degree of feature alignment required at different levels of the deep network. Thorough experiments on different public benchmarks, in the unsupervised setting, confirm the power of our approach.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2017.542</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2380-7504 |
ispartof | 2017 IEEE International Conference on Computer Vision (ICCV), 2017, p.5077-5085 |
issn | 2380-7504 |
language | eng |
recordid | cdi_ieee_primary_8237804 |
source | IEEE Xplore All Conference Series |
subjects | Adaptation models Benchmark testing Machine learning Optimization Training Visualization |
title | AutoDIAL: Automatic Domain Alignment Layers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=AutoDIAL:%20Automatic%20Domain%20Alignment%20Layers&rft.btitle=2017%20IEEE%20International%20Conference%20on%20Computer%20Vision%20(ICCV)&rft.au=Carlucci,%20Fabio%20Maria&rft.date=2017-10&rft.spage=5077&rft.epage=5085&rft.pages=5077-5085&rft.eissn=2380-7504&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICCV.2017.542&rft.eisbn=9781538610329&rft.eisbn_list=1538610329&rft_dat=%3Cieee_CHZPO%3E8237804%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c258t-eec12428e13d41df9e13b12f6d0632053cbc6accfa416c957e492b6bf06832323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8237804&rfr_iscdi=true |