Loading…

Capture point trajectories for reduced knee bend using step time optimization

Traditional force-controlled bipedal walking utilizes highly bent knees, resulting in high torques as well as inefficient, and unnatural motions. Even with advanced planning of center of mass height trajectories, significant amounts of knee-bend can be required due to arbitrarily chosen step timing....

Full description

Saved in:
Bibliographic Details
Main Authors: Griffin, Robert J., Bertrand, Sylvain, Wiedebach, Georg, Leonessa, Alexander, Pratt, Jerry
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 30
container_issue
container_start_page 25
container_title
container_volume
creator Griffin, Robert J.
Bertrand, Sylvain
Wiedebach, Georg
Leonessa, Alexander
Pratt, Jerry
description Traditional force-controlled bipedal walking utilizes highly bent knees, resulting in high torques as well as inefficient, and unnatural motions. Even with advanced planning of center of mass height trajectories, significant amounts of knee-bend can be required due to arbitrarily chosen step timing. In this work, we present a method that examines the effects of adjusting the step timing to produce plans that only require a specified amount of knee bend to execute. We define a quadratic program that optimizes the step timings and is executed using a simple iterative feedback approach to account for higher order terms. We then illustrate the effectiveness of this algorithm by comparing the walking gait of the simulated Atlas humanoid with and without the algorithm, showing that the algorithm significantly reduces the required knee bend for execution. We aim to later use this approach to achieve natural, efficient walking motions on humanoid robot platforms.
doi_str_mv 10.1109/HUMANOIDS.2017.8239533
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8239533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8239533</ieee_id><sourcerecordid>8239533</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ab19fbe565a05b89d46d1adbdb26db86be903b47475bbbcbba7c979fadb03ca23</originalsourceid><addsrcrecordid>eNotkMtKw0AUQEdBsNR8gSDzA6nzyLyWJT5aaO1Cuy5zMzcy1SZhMlno11uwq7M5nMUh5IGzBefMPa722-Xbbv30vhCMm4UV0ikpr0jhjOVKWl1pY_U1mQmuq5Ipy25JMY5Hxpjk1jqhZ2Rb-yFPCenQxy7TnPwRm9yniCNt-0QThqnBQL86RArYBTqNsfukY8aB5nhC2g9nxF-fY9_dkZvWf49YXDgn-5fnj3pVbnav63q5KSM3KpceuGsBlVaeKbAuVDpwHyCA0AGsBnRMQmUqowCgAfCmcca1Z4XJxgs5J_f_3YiIhyHFk08_h8sA-QeYR1K8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Capture point trajectories for reduced knee bend using step time optimization</title><source>IEEE Xplore All Conference Series</source><creator>Griffin, Robert J. ; Bertrand, Sylvain ; Wiedebach, Georg ; Leonessa, Alexander ; Pratt, Jerry</creator><creatorcontrib>Griffin, Robert J. ; Bertrand, Sylvain ; Wiedebach, Georg ; Leonessa, Alexander ; Pratt, Jerry</creatorcontrib><description>Traditional force-controlled bipedal walking utilizes highly bent knees, resulting in high torques as well as inefficient, and unnatural motions. Even with advanced planning of center of mass height trajectories, significant amounts of knee-bend can be required due to arbitrarily chosen step timing. In this work, we present a method that examines the effects of adjusting the step timing to produce plans that only require a specified amount of knee bend to execute. We define a quadratic program that optimizes the step timings and is executed using a simple iterative feedback approach to account for higher order terms. We then illustrate the effectiveness of this algorithm by comparing the walking gait of the simulated Atlas humanoid with and without the algorithm, showing that the algorithm significantly reduces the required knee bend for execution. We aim to later use this approach to achieve natural, efficient walking motions on humanoid robot platforms.</description><identifier>EISSN: 2164-0580</identifier><identifier>EISBN: 9781538646786</identifier><identifier>EISBN: 1538646781</identifier><identifier>DOI: 10.1109/HUMANOIDS.2017.8239533</identifier><language>eng</language><publisher>IEEE</publisher><subject>Hip ; Iterative closest point algorithm ; Knee ; Legged locomotion ; Planning ; Timing ; Trajectory</subject><ispartof>2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), 2017, p.25-30</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8239533$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8239533$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Griffin, Robert J.</creatorcontrib><creatorcontrib>Bertrand, Sylvain</creatorcontrib><creatorcontrib>Wiedebach, Georg</creatorcontrib><creatorcontrib>Leonessa, Alexander</creatorcontrib><creatorcontrib>Pratt, Jerry</creatorcontrib><title>Capture point trajectories for reduced knee bend using step time optimization</title><title>2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)</title><addtitle>HUMANOIDS</addtitle><description>Traditional force-controlled bipedal walking utilizes highly bent knees, resulting in high torques as well as inefficient, and unnatural motions. Even with advanced planning of center of mass height trajectories, significant amounts of knee-bend can be required due to arbitrarily chosen step timing. In this work, we present a method that examines the effects of adjusting the step timing to produce plans that only require a specified amount of knee bend to execute. We define a quadratic program that optimizes the step timings and is executed using a simple iterative feedback approach to account for higher order terms. We then illustrate the effectiveness of this algorithm by comparing the walking gait of the simulated Atlas humanoid with and without the algorithm, showing that the algorithm significantly reduces the required knee bend for execution. We aim to later use this approach to achieve natural, efficient walking motions on humanoid robot platforms.</description><subject>Hip</subject><subject>Iterative closest point algorithm</subject><subject>Knee</subject><subject>Legged locomotion</subject><subject>Planning</subject><subject>Timing</subject><subject>Trajectory</subject><issn>2164-0580</issn><isbn>9781538646786</isbn><isbn>1538646781</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtKw0AUQEdBsNR8gSDzA6nzyLyWJT5aaO1Cuy5zMzcy1SZhMlno11uwq7M5nMUh5IGzBefMPa722-Xbbv30vhCMm4UV0ikpr0jhjOVKWl1pY_U1mQmuq5Ipy25JMY5Hxpjk1jqhZ2Rb-yFPCenQxy7TnPwRm9yniCNt-0QThqnBQL86RArYBTqNsfukY8aB5nhC2g9nxF-fY9_dkZvWf49YXDgn-5fnj3pVbnav63q5KSM3KpceuGsBlVaeKbAuVDpwHyCA0AGsBnRMQmUqowCgAfCmcca1Z4XJxgs5J_f_3YiIhyHFk08_h8sA-QeYR1K8</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Griffin, Robert J.</creator><creator>Bertrand, Sylvain</creator><creator>Wiedebach, Georg</creator><creator>Leonessa, Alexander</creator><creator>Pratt, Jerry</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201711</creationdate><title>Capture point trajectories for reduced knee bend using step time optimization</title><author>Griffin, Robert J. ; Bertrand, Sylvain ; Wiedebach, Georg ; Leonessa, Alexander ; Pratt, Jerry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ab19fbe565a05b89d46d1adbdb26db86be903b47475bbbcbba7c979fadb03ca23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Hip</topic><topic>Iterative closest point algorithm</topic><topic>Knee</topic><topic>Legged locomotion</topic><topic>Planning</topic><topic>Timing</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Griffin, Robert J.</creatorcontrib><creatorcontrib>Bertrand, Sylvain</creatorcontrib><creatorcontrib>Wiedebach, Georg</creatorcontrib><creatorcontrib>Leonessa, Alexander</creatorcontrib><creatorcontrib>Pratt, Jerry</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Griffin, Robert J.</au><au>Bertrand, Sylvain</au><au>Wiedebach, Georg</au><au>Leonessa, Alexander</au><au>Pratt, Jerry</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Capture point trajectories for reduced knee bend using step time optimization</atitle><btitle>2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)</btitle><stitle>HUMANOIDS</stitle><date>2017-11</date><risdate>2017</risdate><spage>25</spage><epage>30</epage><pages>25-30</pages><eissn>2164-0580</eissn><eisbn>9781538646786</eisbn><eisbn>1538646781</eisbn><abstract>Traditional force-controlled bipedal walking utilizes highly bent knees, resulting in high torques as well as inefficient, and unnatural motions. Even with advanced planning of center of mass height trajectories, significant amounts of knee-bend can be required due to arbitrarily chosen step timing. In this work, we present a method that examines the effects of adjusting the step timing to produce plans that only require a specified amount of knee bend to execute. We define a quadratic program that optimizes the step timings and is executed using a simple iterative feedback approach to account for higher order terms. We then illustrate the effectiveness of this algorithm by comparing the walking gait of the simulated Atlas humanoid with and without the algorithm, showing that the algorithm significantly reduces the required knee bend for execution. We aim to later use this approach to achieve natural, efficient walking motions on humanoid robot platforms.</abstract><pub>IEEE</pub><doi>10.1109/HUMANOIDS.2017.8239533</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2164-0580
ispartof 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), 2017, p.25-30
issn 2164-0580
language eng
recordid cdi_ieee_primary_8239533
source IEEE Xplore All Conference Series
subjects Hip
Iterative closest point algorithm
Knee
Legged locomotion
Planning
Timing
Trajectory
title Capture point trajectories for reduced knee bend using step time optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A23%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Capture%20point%20trajectories%20for%20reduced%20knee%20bend%20using%20step%20time%20optimization&rft.btitle=2017%20IEEE-RAS%2017th%20International%20Conference%20on%20Humanoid%20Robotics%20(Humanoids)&rft.au=Griffin,%20Robert%20J.&rft.date=2017-11&rft.spage=25&rft.epage=30&rft.pages=25-30&rft.eissn=2164-0580&rft_id=info:doi/10.1109/HUMANOIDS.2017.8239533&rft.eisbn=9781538646786&rft.eisbn_list=1538646781&rft_dat=%3Cieee_CHZPO%3E8239533%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-ab19fbe565a05b89d46d1adbdb26db86be903b47475bbbcbba7c979fadb03ca23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8239533&rfr_iscdi=true