Loading…

Frequency-Domain Diagnosis Methods for Quality Assessment of Nb3Sn Coil Insulation Systems and Impedance Measurement

In recent years, the superconducting Nb 3 Sn cable material became the privileged mature candidate for the high-field magnets in new projects like high-luminosity LHC (HL-LHC) accelerator at CERN, Geneva, Switzerland. The technology in 2017-2021 needs to be deployed through an unprecedented magnet s...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 2018-04, Vol.28 (3), p.1-5
Main Authors: Foussat, Arnaud, Grand-Clement, Ludovic, Smekens, David, Pincot, Francois Olivier, Bortot, Lorenzo, Savary, Frederic
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c265t-6c9f92ca4f3d800ef9d8fd63bc156baa39f048692dca355c58ca1c8aa151a6e13
cites cdi_FETCH-LOGICAL-c265t-6c9f92ca4f3d800ef9d8fd63bc156baa39f048692dca355c58ca1c8aa151a6e13
container_end_page 5
container_issue 3
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 28
creator Foussat, Arnaud
Grand-Clement, Ludovic
Smekens, David
Pincot, Francois Olivier
Bortot, Lorenzo
Savary, Frederic
description In recent years, the superconducting Nb 3 Sn cable material became the privileged mature candidate for the high-field magnets in new projects like high-luminosity LHC (HL-LHC) accelerator at CERN, Geneva, Switzerland. The technology in 2017-2021 needs to be deployed through an unprecedented magnet series production with dedicated online quality control. The key fabrication stage of the vacuum pressure impregnation (VPI) after the heat treatment reaction of Nb 3 Sn coils, as on the new 11-T dispersion region dipole, enhances both the structural integrity and the dielectric strength of the winding packs. The global vacuum impregnation pressure method exhibits various merits in insulation performance and high dielectric strength reliability, which is strongly dependent on the success of the resin filling cycle. This online capacitive measurement method enables one to derive comparative master trend curves of various impregnated coils and possibly optimize the curing cycle. Ultimately, a combination of the above methods with a dielectric frequency response can bring insights on the impregnation process, the impacts from the resin choice and insulation material quality on the degree of curing, and the coil assembly geometry. The frequency impedance measurement of the first short dipole models DP101-102 provides the distributed lumped circuit fitting electrical parameters for the transient characterization of produced magnets.
doi_str_mv 10.1109/TASC.2017.2787748
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8241421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8241421</ieee_id><sourcerecordid>10_1109_TASC_2017_2787748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-6c9f92ca4f3d800ef9d8fd63bc156baa39f048692dca355c58ca1c8aa151a6e13</originalsourceid><addsrcrecordid>eNo9kEFOwzAURC0EEqVwAMTGF0jxt-PEWVYphUoFhFrW0a9jg1Filzhd5PY0asVqZjFvFo-Qe2AzAFY8buebcsYZ5DOeqzxP1QWZgJQq4RLk5bEzCYniXFyTmxh_GINUpXJC-mVnfg_G6yFZhBadpwuHXz5EF-mr6b9DHakNHf04YOP6gc5jNDG2xvc0WPq2ExtPy-AauvLx0GDvgqebIfamjRR9TVft3tTotTm-YTx0ZkRvyZXFJpq7c07J5_JpW74k6_fnVTlfJ5pnsk8yXdiCa0ytqBVjxha1snUmdhpktkMUhWWpygpeaxRSaqk0glaIIAEzA2JK4PSruxBjZ2y171yL3VABq0Zt1aitGrVVZ21H5uHEOGPM_17xFFIO4g8F42vA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Frequency-Domain Diagnosis Methods for Quality Assessment of Nb3Sn Coil Insulation Systems and Impedance Measurement</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Foussat, Arnaud ; Grand-Clement, Ludovic ; Smekens, David ; Pincot, Francois Olivier ; Bortot, Lorenzo ; Savary, Frederic</creator><creatorcontrib>Foussat, Arnaud ; Grand-Clement, Ludovic ; Smekens, David ; Pincot, Francois Olivier ; Bortot, Lorenzo ; Savary, Frederic</creatorcontrib><description>In recent years, the superconducting Nb 3 Sn cable material became the privileged mature candidate for the high-field magnets in new projects like high-luminosity LHC (HL-LHC) accelerator at CERN, Geneva, Switzerland. The technology in 2017-2021 needs to be deployed through an unprecedented magnet series production with dedicated online quality control. The key fabrication stage of the vacuum pressure impregnation (VPI) after the heat treatment reaction of Nb 3 Sn coils, as on the new 11-T dispersion region dipole, enhances both the structural integrity and the dielectric strength of the winding packs. The global vacuum impregnation pressure method exhibits various merits in insulation performance and high dielectric strength reliability, which is strongly dependent on the success of the resin filling cycle. This online capacitive measurement method enables one to derive comparative master trend curves of various impregnated coils and possibly optimize the curing cycle. Ultimately, a combination of the above methods with a dielectric frequency response can bring insights on the impregnation process, the impacts from the resin choice and insulation material quality on the degree of curing, and the coil assembly geometry. The frequency impedance measurement of the first short dipole models DP101-102 provides the distributed lumped circuit fitting electrical parameters for the transient characterization of produced magnets.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2017.2787748</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>IEEE</publisher><subject><![CDATA[Capacitance ; capacitance measurement ; Dielectrics ; frequency dielectric response ; Insulation ; Nb<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _3</tex-math> </inline-formula> </named-content>Sn accelerator coils ; Permittivity ; Resins ; Superconducting magnets ; Temperature measurement ; vacuum pressure impregnation]]></subject><ispartof>IEEE transactions on applied superconductivity, 2018-04, Vol.28 (3), p.1-5</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-6c9f92ca4f3d800ef9d8fd63bc156baa39f048692dca355c58ca1c8aa151a6e13</citedby><cites>FETCH-LOGICAL-c265t-6c9f92ca4f3d800ef9d8fd63bc156baa39f048692dca355c58ca1c8aa151a6e13</cites><orcidid>0000-0003-0409-7287 ; 0000-0003-4384-6308 ; 0000-0001-8598-7446 ; 0000-0002-7703-6840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8241421$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Foussat, Arnaud</creatorcontrib><creatorcontrib>Grand-Clement, Ludovic</creatorcontrib><creatorcontrib>Smekens, David</creatorcontrib><creatorcontrib>Pincot, Francois Olivier</creatorcontrib><creatorcontrib>Bortot, Lorenzo</creatorcontrib><creatorcontrib>Savary, Frederic</creatorcontrib><title>Frequency-Domain Diagnosis Methods for Quality Assessment of Nb3Sn Coil Insulation Systems and Impedance Measurement</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>In recent years, the superconducting Nb 3 Sn cable material became the privileged mature candidate for the high-field magnets in new projects like high-luminosity LHC (HL-LHC) accelerator at CERN, Geneva, Switzerland. The technology in 2017-2021 needs to be deployed through an unprecedented magnet series production with dedicated online quality control. The key fabrication stage of the vacuum pressure impregnation (VPI) after the heat treatment reaction of Nb 3 Sn coils, as on the new 11-T dispersion region dipole, enhances both the structural integrity and the dielectric strength of the winding packs. The global vacuum impregnation pressure method exhibits various merits in insulation performance and high dielectric strength reliability, which is strongly dependent on the success of the resin filling cycle. This online capacitive measurement method enables one to derive comparative master trend curves of various impregnated coils and possibly optimize the curing cycle. Ultimately, a combination of the above methods with a dielectric frequency response can bring insights on the impregnation process, the impacts from the resin choice and insulation material quality on the degree of curing, and the coil assembly geometry. The frequency impedance measurement of the first short dipole models DP101-102 provides the distributed lumped circuit fitting electrical parameters for the transient characterization of produced magnets.</description><subject>Capacitance</subject><subject>capacitance measurement</subject><subject>Dielectrics</subject><subject>frequency dielectric response</subject><subject>Insulation</subject><subject><![CDATA[Nb<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _3</tex-math> </inline-formula> </named-content>Sn accelerator coils]]></subject><subject>Permittivity</subject><subject>Resins</subject><subject>Superconducting magnets</subject><subject>Temperature measurement</subject><subject>vacuum pressure impregnation</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEFOwzAURC0EEqVwAMTGF0jxt-PEWVYphUoFhFrW0a9jg1Filzhd5PY0asVqZjFvFo-Qe2AzAFY8buebcsYZ5DOeqzxP1QWZgJQq4RLk5bEzCYniXFyTmxh_GINUpXJC-mVnfg_G6yFZhBadpwuHXz5EF-mr6b9DHakNHf04YOP6gc5jNDG2xvc0WPq2ExtPy-AauvLx0GDvgqebIfamjRR9TVft3tTotTm-YTx0ZkRvyZXFJpq7c07J5_JpW74k6_fnVTlfJ5pnsk8yXdiCa0ytqBVjxha1snUmdhpktkMUhWWpygpeaxRSaqk0glaIIAEzA2JK4PSruxBjZ2y171yL3VABq0Zt1aitGrVVZ21H5uHEOGPM_17xFFIO4g8F42vA</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Foussat, Arnaud</creator><creator>Grand-Clement, Ludovic</creator><creator>Smekens, David</creator><creator>Pincot, Francois Olivier</creator><creator>Bortot, Lorenzo</creator><creator>Savary, Frederic</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0409-7287</orcidid><orcidid>https://orcid.org/0000-0003-4384-6308</orcidid><orcidid>https://orcid.org/0000-0001-8598-7446</orcidid><orcidid>https://orcid.org/0000-0002-7703-6840</orcidid></search><sort><creationdate>201804</creationdate><title>Frequency-Domain Diagnosis Methods for Quality Assessment of Nb3Sn Coil Insulation Systems and Impedance Measurement</title><author>Foussat, Arnaud ; Grand-Clement, Ludovic ; Smekens, David ; Pincot, Francois Olivier ; Bortot, Lorenzo ; Savary, Frederic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-6c9f92ca4f3d800ef9d8fd63bc156baa39f048692dca355c58ca1c8aa151a6e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Capacitance</topic><topic>capacitance measurement</topic><topic>Dielectrics</topic><topic>frequency dielectric response</topic><topic>Insulation</topic><topic><![CDATA[Nb<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _3</tex-math> </inline-formula> </named-content>Sn accelerator coils]]></topic><topic>Permittivity</topic><topic>Resins</topic><topic>Superconducting magnets</topic><topic>Temperature measurement</topic><topic>vacuum pressure impregnation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foussat, Arnaud</creatorcontrib><creatorcontrib>Grand-Clement, Ludovic</creatorcontrib><creatorcontrib>Smekens, David</creatorcontrib><creatorcontrib>Pincot, Francois Olivier</creatorcontrib><creatorcontrib>Bortot, Lorenzo</creatorcontrib><creatorcontrib>Savary, Frederic</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foussat, Arnaud</au><au>Grand-Clement, Ludovic</au><au>Smekens, David</au><au>Pincot, Francois Olivier</au><au>Bortot, Lorenzo</au><au>Savary, Frederic</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency-Domain Diagnosis Methods for Quality Assessment of Nb3Sn Coil Insulation Systems and Impedance Measurement</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2018-04</date><risdate>2018</risdate><volume>28</volume><issue>3</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>In recent years, the superconducting Nb 3 Sn cable material became the privileged mature candidate for the high-field magnets in new projects like high-luminosity LHC (HL-LHC) accelerator at CERN, Geneva, Switzerland. The technology in 2017-2021 needs to be deployed through an unprecedented magnet series production with dedicated online quality control. The key fabrication stage of the vacuum pressure impregnation (VPI) after the heat treatment reaction of Nb 3 Sn coils, as on the new 11-T dispersion region dipole, enhances both the structural integrity and the dielectric strength of the winding packs. The global vacuum impregnation pressure method exhibits various merits in insulation performance and high dielectric strength reliability, which is strongly dependent on the success of the resin filling cycle. This online capacitive measurement method enables one to derive comparative master trend curves of various impregnated coils and possibly optimize the curing cycle. Ultimately, a combination of the above methods with a dielectric frequency response can bring insights on the impregnation process, the impacts from the resin choice and insulation material quality on the degree of curing, and the coil assembly geometry. The frequency impedance measurement of the first short dipole models DP101-102 provides the distributed lumped circuit fitting electrical parameters for the transient characterization of produced magnets.</abstract><pub>IEEE</pub><doi>10.1109/TASC.2017.2787748</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0409-7287</orcidid><orcidid>https://orcid.org/0000-0003-4384-6308</orcidid><orcidid>https://orcid.org/0000-0001-8598-7446</orcidid><orcidid>https://orcid.org/0000-0002-7703-6840</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2018-04, Vol.28 (3), p.1-5
issn 1051-8223
1558-2515
language eng
recordid cdi_ieee_primary_8241421
source IEEE Electronic Library (IEL) Journals
subjects Capacitance
capacitance measurement
Dielectrics
frequency dielectric response
Insulation
Nb<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _3</tex-math> </inline-formula> </named-content>Sn accelerator coils
Permittivity
Resins
Superconducting magnets
Temperature measurement
vacuum pressure impregnation
title Frequency-Domain Diagnosis Methods for Quality Assessment of Nb3Sn Coil Insulation Systems and Impedance Measurement
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A33%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency-Domain%20Diagnosis%20Methods%20for%20Quality%20Assessment%20of%20Nb3Sn%20Coil%20Insulation%20Systems%20and%20Impedance%20Measurement&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Foussat,%20Arnaud&rft.date=2018-04&rft.volume=28&rft.issue=3&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2017.2787748&rft_dat=%3Ccrossref_ieee_%3E10_1109_TASC_2017_2787748%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c265t-6c9f92ca4f3d800ef9d8fd63bc156baa39f048692dca355c58ca1c8aa151a6e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8241421&rfr_iscdi=true