Loading…
Frequency-Domain Diagnosis Methods for Quality Assessment of Nb3Sn Coil Insulation Systems and Impedance Measurement
In recent years, the superconducting Nb 3 Sn cable material became the privileged mature candidate for the high-field magnets in new projects like high-luminosity LHC (HL-LHC) accelerator at CERN, Geneva, Switzerland. The technology in 2017-2021 needs to be deployed through an unprecedented magnet s...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2018-04, Vol.28 (3), p.1-5 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c265t-6c9f92ca4f3d800ef9d8fd63bc156baa39f048692dca355c58ca1c8aa151a6e13 |
---|---|
cites | cdi_FETCH-LOGICAL-c265t-6c9f92ca4f3d800ef9d8fd63bc156baa39f048692dca355c58ca1c8aa151a6e13 |
container_end_page | 5 |
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 28 |
creator | Foussat, Arnaud Grand-Clement, Ludovic Smekens, David Pincot, Francois Olivier Bortot, Lorenzo Savary, Frederic |
description | In recent years, the superconducting Nb 3 Sn cable material became the privileged mature candidate for the high-field magnets in new projects like high-luminosity LHC (HL-LHC) accelerator at CERN, Geneva, Switzerland. The technology in 2017-2021 needs to be deployed through an unprecedented magnet series production with dedicated online quality control. The key fabrication stage of the vacuum pressure impregnation (VPI) after the heat treatment reaction of Nb 3 Sn coils, as on the new 11-T dispersion region dipole, enhances both the structural integrity and the dielectric strength of the winding packs. The global vacuum impregnation pressure method exhibits various merits in insulation performance and high dielectric strength reliability, which is strongly dependent on the success of the resin filling cycle. This online capacitive measurement method enables one to derive comparative master trend curves of various impregnated coils and possibly optimize the curing cycle. Ultimately, a combination of the above methods with a dielectric frequency response can bring insights on the impregnation process, the impacts from the resin choice and insulation material quality on the degree of curing, and the coil assembly geometry. The frequency impedance measurement of the first short dipole models DP101-102 provides the distributed lumped circuit fitting electrical parameters for the transient characterization of produced magnets. |
doi_str_mv | 10.1109/TASC.2017.2787748 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8241421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8241421</ieee_id><sourcerecordid>10_1109_TASC_2017_2787748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-6c9f92ca4f3d800ef9d8fd63bc156baa39f048692dca355c58ca1c8aa151a6e13</originalsourceid><addsrcrecordid>eNo9kEFOwzAURC0EEqVwAMTGF0jxt-PEWVYphUoFhFrW0a9jg1Filzhd5PY0asVqZjFvFo-Qe2AzAFY8buebcsYZ5DOeqzxP1QWZgJQq4RLk5bEzCYniXFyTmxh_GINUpXJC-mVnfg_G6yFZhBadpwuHXz5EF-mr6b9DHakNHf04YOP6gc5jNDG2xvc0WPq2ExtPy-AauvLx0GDvgqebIfamjRR9TVft3tTotTm-YTx0ZkRvyZXFJpq7c07J5_JpW74k6_fnVTlfJ5pnsk8yXdiCa0ytqBVjxha1snUmdhpktkMUhWWpygpeaxRSaqk0glaIIAEzA2JK4PSruxBjZ2y171yL3VABq0Zt1aitGrVVZ21H5uHEOGPM_17xFFIO4g8F42vA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Frequency-Domain Diagnosis Methods for Quality Assessment of Nb3Sn Coil Insulation Systems and Impedance Measurement</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Foussat, Arnaud ; Grand-Clement, Ludovic ; Smekens, David ; Pincot, Francois Olivier ; Bortot, Lorenzo ; Savary, Frederic</creator><creatorcontrib>Foussat, Arnaud ; Grand-Clement, Ludovic ; Smekens, David ; Pincot, Francois Olivier ; Bortot, Lorenzo ; Savary, Frederic</creatorcontrib><description>In recent years, the superconducting Nb 3 Sn cable material became the privileged mature candidate for the high-field magnets in new projects like high-luminosity LHC (HL-LHC) accelerator at CERN, Geneva, Switzerland. The technology in 2017-2021 needs to be deployed through an unprecedented magnet series production with dedicated online quality control. The key fabrication stage of the vacuum pressure impregnation (VPI) after the heat treatment reaction of Nb 3 Sn coils, as on the new 11-T dispersion region dipole, enhances both the structural integrity and the dielectric strength of the winding packs. The global vacuum impregnation pressure method exhibits various merits in insulation performance and high dielectric strength reliability, which is strongly dependent on the success of the resin filling cycle. This online capacitive measurement method enables one to derive comparative master trend curves of various impregnated coils and possibly optimize the curing cycle. Ultimately, a combination of the above methods with a dielectric frequency response can bring insights on the impregnation process, the impacts from the resin choice and insulation material quality on the degree of curing, and the coil assembly geometry. The frequency impedance measurement of the first short dipole models DP101-102 provides the distributed lumped circuit fitting electrical parameters for the transient characterization of produced magnets.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2017.2787748</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>IEEE</publisher><subject><![CDATA[Capacitance ; capacitance measurement ; Dielectrics ; frequency dielectric response ; Insulation ; Nb<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _3</tex-math> </inline-formula> </named-content>Sn accelerator coils ; Permittivity ; Resins ; Superconducting magnets ; Temperature measurement ; vacuum pressure impregnation]]></subject><ispartof>IEEE transactions on applied superconductivity, 2018-04, Vol.28 (3), p.1-5</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-6c9f92ca4f3d800ef9d8fd63bc156baa39f048692dca355c58ca1c8aa151a6e13</citedby><cites>FETCH-LOGICAL-c265t-6c9f92ca4f3d800ef9d8fd63bc156baa39f048692dca355c58ca1c8aa151a6e13</cites><orcidid>0000-0003-0409-7287 ; 0000-0003-4384-6308 ; 0000-0001-8598-7446 ; 0000-0002-7703-6840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8241421$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Foussat, Arnaud</creatorcontrib><creatorcontrib>Grand-Clement, Ludovic</creatorcontrib><creatorcontrib>Smekens, David</creatorcontrib><creatorcontrib>Pincot, Francois Olivier</creatorcontrib><creatorcontrib>Bortot, Lorenzo</creatorcontrib><creatorcontrib>Savary, Frederic</creatorcontrib><title>Frequency-Domain Diagnosis Methods for Quality Assessment of Nb3Sn Coil Insulation Systems and Impedance Measurement</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>In recent years, the superconducting Nb 3 Sn cable material became the privileged mature candidate for the high-field magnets in new projects like high-luminosity LHC (HL-LHC) accelerator at CERN, Geneva, Switzerland. The technology in 2017-2021 needs to be deployed through an unprecedented magnet series production with dedicated online quality control. The key fabrication stage of the vacuum pressure impregnation (VPI) after the heat treatment reaction of Nb 3 Sn coils, as on the new 11-T dispersion region dipole, enhances both the structural integrity and the dielectric strength of the winding packs. The global vacuum impregnation pressure method exhibits various merits in insulation performance and high dielectric strength reliability, which is strongly dependent on the success of the resin filling cycle. This online capacitive measurement method enables one to derive comparative master trend curves of various impregnated coils and possibly optimize the curing cycle. Ultimately, a combination of the above methods with a dielectric frequency response can bring insights on the impregnation process, the impacts from the resin choice and insulation material quality on the degree of curing, and the coil assembly geometry. The frequency impedance measurement of the first short dipole models DP101-102 provides the distributed lumped circuit fitting electrical parameters for the transient characterization of produced magnets.</description><subject>Capacitance</subject><subject>capacitance measurement</subject><subject>Dielectrics</subject><subject>frequency dielectric response</subject><subject>Insulation</subject><subject><![CDATA[Nb<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _3</tex-math> </inline-formula> </named-content>Sn accelerator coils]]></subject><subject>Permittivity</subject><subject>Resins</subject><subject>Superconducting magnets</subject><subject>Temperature measurement</subject><subject>vacuum pressure impregnation</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEFOwzAURC0EEqVwAMTGF0jxt-PEWVYphUoFhFrW0a9jg1Filzhd5PY0asVqZjFvFo-Qe2AzAFY8buebcsYZ5DOeqzxP1QWZgJQq4RLk5bEzCYniXFyTmxh_GINUpXJC-mVnfg_G6yFZhBadpwuHXz5EF-mr6b9DHakNHf04YOP6gc5jNDG2xvc0WPq2ExtPy-AauvLx0GDvgqebIfamjRR9TVft3tTotTm-YTx0ZkRvyZXFJpq7c07J5_JpW74k6_fnVTlfJ5pnsk8yXdiCa0ytqBVjxha1snUmdhpktkMUhWWpygpeaxRSaqk0glaIIAEzA2JK4PSruxBjZ2y171yL3VABq0Zt1aitGrVVZ21H5uHEOGPM_17xFFIO4g8F42vA</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Foussat, Arnaud</creator><creator>Grand-Clement, Ludovic</creator><creator>Smekens, David</creator><creator>Pincot, Francois Olivier</creator><creator>Bortot, Lorenzo</creator><creator>Savary, Frederic</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0409-7287</orcidid><orcidid>https://orcid.org/0000-0003-4384-6308</orcidid><orcidid>https://orcid.org/0000-0001-8598-7446</orcidid><orcidid>https://orcid.org/0000-0002-7703-6840</orcidid></search><sort><creationdate>201804</creationdate><title>Frequency-Domain Diagnosis Methods for Quality Assessment of Nb3Sn Coil Insulation Systems and Impedance Measurement</title><author>Foussat, Arnaud ; Grand-Clement, Ludovic ; Smekens, David ; Pincot, Francois Olivier ; Bortot, Lorenzo ; Savary, Frederic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-6c9f92ca4f3d800ef9d8fd63bc156baa39f048692dca355c58ca1c8aa151a6e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Capacitance</topic><topic>capacitance measurement</topic><topic>Dielectrics</topic><topic>frequency dielectric response</topic><topic>Insulation</topic><topic><![CDATA[Nb<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _3</tex-math> </inline-formula> </named-content>Sn accelerator coils]]></topic><topic>Permittivity</topic><topic>Resins</topic><topic>Superconducting magnets</topic><topic>Temperature measurement</topic><topic>vacuum pressure impregnation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foussat, Arnaud</creatorcontrib><creatorcontrib>Grand-Clement, Ludovic</creatorcontrib><creatorcontrib>Smekens, David</creatorcontrib><creatorcontrib>Pincot, Francois Olivier</creatorcontrib><creatorcontrib>Bortot, Lorenzo</creatorcontrib><creatorcontrib>Savary, Frederic</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foussat, Arnaud</au><au>Grand-Clement, Ludovic</au><au>Smekens, David</au><au>Pincot, Francois Olivier</au><au>Bortot, Lorenzo</au><au>Savary, Frederic</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency-Domain Diagnosis Methods for Quality Assessment of Nb3Sn Coil Insulation Systems and Impedance Measurement</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2018-04</date><risdate>2018</risdate><volume>28</volume><issue>3</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>In recent years, the superconducting Nb 3 Sn cable material became the privileged mature candidate for the high-field magnets in new projects like high-luminosity LHC (HL-LHC) accelerator at CERN, Geneva, Switzerland. The technology in 2017-2021 needs to be deployed through an unprecedented magnet series production with dedicated online quality control. The key fabrication stage of the vacuum pressure impregnation (VPI) after the heat treatment reaction of Nb 3 Sn coils, as on the new 11-T dispersion region dipole, enhances both the structural integrity and the dielectric strength of the winding packs. The global vacuum impregnation pressure method exhibits various merits in insulation performance and high dielectric strength reliability, which is strongly dependent on the success of the resin filling cycle. This online capacitive measurement method enables one to derive comparative master trend curves of various impregnated coils and possibly optimize the curing cycle. Ultimately, a combination of the above methods with a dielectric frequency response can bring insights on the impregnation process, the impacts from the resin choice and insulation material quality on the degree of curing, and the coil assembly geometry. The frequency impedance measurement of the first short dipole models DP101-102 provides the distributed lumped circuit fitting electrical parameters for the transient characterization of produced magnets.</abstract><pub>IEEE</pub><doi>10.1109/TASC.2017.2787748</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0409-7287</orcidid><orcidid>https://orcid.org/0000-0003-4384-6308</orcidid><orcidid>https://orcid.org/0000-0001-8598-7446</orcidid><orcidid>https://orcid.org/0000-0002-7703-6840</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2018-04, Vol.28 (3), p.1-5 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_ieee_primary_8241421 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Capacitance capacitance measurement Dielectrics frequency dielectric response Insulation Nb<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _3</tex-math> </inline-formula> </named-content>Sn accelerator coils Permittivity Resins Superconducting magnets Temperature measurement vacuum pressure impregnation |
title | Frequency-Domain Diagnosis Methods for Quality Assessment of Nb3Sn Coil Insulation Systems and Impedance Measurement |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A33%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency-Domain%20Diagnosis%20Methods%20for%20Quality%20Assessment%20of%20Nb3Sn%20Coil%20Insulation%20Systems%20and%20Impedance%20Measurement&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Foussat,%20Arnaud&rft.date=2018-04&rft.volume=28&rft.issue=3&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2017.2787748&rft_dat=%3Ccrossref_ieee_%3E10_1109_TASC_2017_2787748%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c265t-6c9f92ca4f3d800ef9d8fd63bc156baa39f048692dca355c58ca1c8aa151a6e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8241421&rfr_iscdi=true |