Loading…
Semisupervised Hyperspectral Image Classification Based on Generative Adversarial Networks
Because the collection of ground-truth labels is difficult, expensive, and time-consuming, classifying hyperspectral images (HSIs) with few training samples is a challenging problem. In this letter, we propose a novel semisupervised algorithm for the classification of hyperspectral data by training...
Saved in:
Published in: | IEEE geoscience and remote sensing letters 2018-02, Vol.15 (2), p.212-216 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c429t-faaf10b31bd1eebb41ecd70dd5c75be260589280793f41c94bc1a2f6b2e3a38d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c429t-faaf10b31bd1eebb41ecd70dd5c75be260589280793f41c94bc1a2f6b2e3a38d3 |
container_end_page | 216 |
container_issue | 2 |
container_start_page | 212 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 15 |
creator | Zhan, Ying Hu, Dan Wang, Yuntao Yu, Xianchuan |
description | Because the collection of ground-truth labels is difficult, expensive, and time-consuming, classifying hyperspectral images (HSIs) with few training samples is a challenging problem. In this letter, we propose a novel semisupervised algorithm for the classification of hyperspectral data by training a customized generative adversarial network (GAN) for hyperspectral data. The GAN constructs an adversarial game between a discriminator and a generator. The generator generates samples that are not distinguishable by the discriminator, and the discriminator determines whether or not a sample is composed of real data. We design a semisupervised framework for HSI data based on a 1-D GAN (HSGAN). This framework enables the automatic extraction of spectral features for HSI classification. When HSGAN is trained using unlabeled hyperspectral data, the generator can generate hyperspectral samples that are similar to the real data, while the discriminator contains the features, which can be used to classify hyperspectral data with only a small number of labeled samples. The performance of the HSGAN is evaluated on the Airborne Visible Infrared Imaging Spectrometer image data, and the results show that the proposed framework achieves very promising results with a small number of labeled samples. |
doi_str_mv | 10.1109/LGRS.2017.2780890 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8241773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8241773</ieee_id><sourcerecordid>2174543628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-faaf10b31bd1eebb41ecd70dd5c75be260589280793f41c94bc1a2f6b2e3a38d3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwseN6ayUeTPWrRtlAUrIJ4CdnsrKS23ZpsK_33ZmnxNC_D88zAS8g10AEALe5m49f5gFFQA6Y01QU9IT2QUudUKjjtspC5LPTHObmIcUEpE1qrHvmc48rH7QbDzkesssk-xbhB1wa7zKYr-4XZaGlj9LV3tvXNOnuwHZjCGNcY0m6H2X21S5oNPknP2P424TtekrPaLiNeHWefvD89vo0m-exlPB3dz3InWNHmtbU10JJDWQFiWQpAVylaVdIpWSIbUqkLpqkqeC3AFaJ0YFk9LBlyy3XF--T2cHcTmp8txtYsmm1Yp5eGgRJS8CHTiYID5UITY8DabIJf2bA3QE1XoekqNF2F5lhhcm4OjkfEf14zAUpx_gf4O28i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174543628</pqid></control><display><type>article</type><title>Semisupervised Hyperspectral Image Classification Based on Generative Adversarial Networks</title><source>IEEE Xplore (Online service)</source><creator>Zhan, Ying ; Hu, Dan ; Wang, Yuntao ; Yu, Xianchuan</creator><creatorcontrib>Zhan, Ying ; Hu, Dan ; Wang, Yuntao ; Yu, Xianchuan</creatorcontrib><description>Because the collection of ground-truth labels is difficult, expensive, and time-consuming, classifying hyperspectral images (HSIs) with few training samples is a challenging problem. In this letter, we propose a novel semisupervised algorithm for the classification of hyperspectral data by training a customized generative adversarial network (GAN) for hyperspectral data. The GAN constructs an adversarial game between a discriminator and a generator. The generator generates samples that are not distinguishable by the discriminator, and the discriminator determines whether or not a sample is composed of real data. We design a semisupervised framework for HSI data based on a 1-D GAN (HSGAN). This framework enables the automatic extraction of spectral features for HSI classification. When HSGAN is trained using unlabeled hyperspectral data, the generator can generate hyperspectral samples that are similar to the real data, while the discriminator contains the features, which can be used to classify hyperspectral data with only a small number of labeled samples. The performance of the HSGAN is evaluated on the Airborne Visible Infrared Imaging Spectrometer image data, and the results show that the proposed framework achieves very promising results with a small number of labeled samples.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2017.2780890</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Classification ; Data ; Data models ; Deep learning ; Feature extraction ; Frameworks ; Gallium nitride ; generative adversarial network (GAN) ; Generative adversarial networks ; Generators ; hyperspectral image (HSI) classification ; Hyperspectral imaging ; Image classification ; Imaging techniques ; Infrared imagery ; Infrared imaging ; Infrared spectrometers ; remote sensing ; Satellites ; semisupervised learning (SSL) ; Training</subject><ispartof>IEEE geoscience and remote sensing letters, 2018-02, Vol.15 (2), p.212-216</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-faaf10b31bd1eebb41ecd70dd5c75be260589280793f41c94bc1a2f6b2e3a38d3</citedby><cites>FETCH-LOGICAL-c429t-faaf10b31bd1eebb41ecd70dd5c75be260589280793f41c94bc1a2f6b2e3a38d3</cites><orcidid>0000-0001-8525-3661 ; 0000-0002-5768-6184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8241773$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhan, Ying</creatorcontrib><creatorcontrib>Hu, Dan</creatorcontrib><creatorcontrib>Wang, Yuntao</creatorcontrib><creatorcontrib>Yu, Xianchuan</creatorcontrib><title>Semisupervised Hyperspectral Image Classification Based on Generative Adversarial Networks</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Because the collection of ground-truth labels is difficult, expensive, and time-consuming, classifying hyperspectral images (HSIs) with few training samples is a challenging problem. In this letter, we propose a novel semisupervised algorithm for the classification of hyperspectral data by training a customized generative adversarial network (GAN) for hyperspectral data. The GAN constructs an adversarial game between a discriminator and a generator. The generator generates samples that are not distinguishable by the discriminator, and the discriminator determines whether or not a sample is composed of real data. We design a semisupervised framework for HSI data based on a 1-D GAN (HSGAN). This framework enables the automatic extraction of spectral features for HSI classification. When HSGAN is trained using unlabeled hyperspectral data, the generator can generate hyperspectral samples that are similar to the real data, while the discriminator contains the features, which can be used to classify hyperspectral data with only a small number of labeled samples. The performance of the HSGAN is evaluated on the Airborne Visible Infrared Imaging Spectrometer image data, and the results show that the proposed framework achieves very promising results with a small number of labeled samples.</description><subject>Classification</subject><subject>Data</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Frameworks</subject><subject>Gallium nitride</subject><subject>generative adversarial network (GAN)</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>hyperspectral image (HSI) classification</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Imaging techniques</subject><subject>Infrared imagery</subject><subject>Infrared imaging</subject><subject>Infrared spectrometers</subject><subject>remote sensing</subject><subject>Satellites</subject><subject>semisupervised learning (SSL)</subject><subject>Training</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKs_QLwseN6ayUeTPWrRtlAUrIJ4CdnsrKS23ZpsK_33ZmnxNC_D88zAS8g10AEALe5m49f5gFFQA6Y01QU9IT2QUudUKjjtspC5LPTHObmIcUEpE1qrHvmc48rH7QbDzkesssk-xbhB1wa7zKYr-4XZaGlj9LV3tvXNOnuwHZjCGNcY0m6H2X21S5oNPknP2P424TtekrPaLiNeHWefvD89vo0m-exlPB3dz3InWNHmtbU10JJDWQFiWQpAVylaVdIpWSIbUqkLpqkqeC3AFaJ0YFk9LBlyy3XF--T2cHcTmp8txtYsmm1Yp5eGgRJS8CHTiYID5UITY8DabIJf2bA3QE1XoekqNF2F5lhhcm4OjkfEf14zAUpx_gf4O28i</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Zhan, Ying</creator><creator>Hu, Dan</creator><creator>Wang, Yuntao</creator><creator>Yu, Xianchuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8525-3661</orcidid><orcidid>https://orcid.org/0000-0002-5768-6184</orcidid></search><sort><creationdate>20180201</creationdate><title>Semisupervised Hyperspectral Image Classification Based on Generative Adversarial Networks</title><author>Zhan, Ying ; Hu, Dan ; Wang, Yuntao ; Yu, Xianchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-faaf10b31bd1eebb41ecd70dd5c75be260589280793f41c94bc1a2f6b2e3a38d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classification</topic><topic>Data</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Frameworks</topic><topic>Gallium nitride</topic><topic>generative adversarial network (GAN)</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>hyperspectral image (HSI) classification</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Imaging techniques</topic><topic>Infrared imagery</topic><topic>Infrared imaging</topic><topic>Infrared spectrometers</topic><topic>remote sensing</topic><topic>Satellites</topic><topic>semisupervised learning (SSL)</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Ying</creatorcontrib><creatorcontrib>Hu, Dan</creatorcontrib><creatorcontrib>Wang, Yuntao</creatorcontrib><creatorcontrib>Yu, Xianchuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Ying</au><au>Hu, Dan</au><au>Wang, Yuntao</au><au>Yu, Xianchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semisupervised Hyperspectral Image Classification Based on Generative Adversarial Networks</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>15</volume><issue>2</issue><spage>212</spage><epage>216</epage><pages>212-216</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Because the collection of ground-truth labels is difficult, expensive, and time-consuming, classifying hyperspectral images (HSIs) with few training samples is a challenging problem. In this letter, we propose a novel semisupervised algorithm for the classification of hyperspectral data by training a customized generative adversarial network (GAN) for hyperspectral data. The GAN constructs an adversarial game between a discriminator and a generator. The generator generates samples that are not distinguishable by the discriminator, and the discriminator determines whether or not a sample is composed of real data. We design a semisupervised framework for HSI data based on a 1-D GAN (HSGAN). This framework enables the automatic extraction of spectral features for HSI classification. When HSGAN is trained using unlabeled hyperspectral data, the generator can generate hyperspectral samples that are similar to the real data, while the discriminator contains the features, which can be used to classify hyperspectral data with only a small number of labeled samples. The performance of the HSGAN is evaluated on the Airborne Visible Infrared Imaging Spectrometer image data, and the results show that the proposed framework achieves very promising results with a small number of labeled samples.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2017.2780890</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8525-3661</orcidid><orcidid>https://orcid.org/0000-0002-5768-6184</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2018-02, Vol.15 (2), p.212-216 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_ieee_primary_8241773 |
source | IEEE Xplore (Online service) |
subjects | Classification Data Data models Deep learning Feature extraction Frameworks Gallium nitride generative adversarial network (GAN) Generative adversarial networks Generators hyperspectral image (HSI) classification Hyperspectral imaging Image classification Imaging techniques Infrared imagery Infrared imaging Infrared spectrometers remote sensing Satellites semisupervised learning (SSL) Training |
title | Semisupervised Hyperspectral Image Classification Based on Generative Adversarial Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semisupervised%20Hyperspectral%20Image%20Classification%20Based%20on%20Generative%20Adversarial%20Networks&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Zhan,%20Ying&rft.date=2018-02-01&rft.volume=15&rft.issue=2&rft.spage=212&rft.epage=216&rft.pages=212-216&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2017.2780890&rft_dat=%3Cproquest_ieee_%3E2174543628%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-faaf10b31bd1eebb41ecd70dd5c75be260589280793f41c94bc1a2f6b2e3a38d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174543628&rft_id=info:pmid/&rft_ieee_id=8241773&rfr_iscdi=true |