Loading…

Semisupervised Hyperspectral Image Classification Based on Generative Adversarial Networks

Because the collection of ground-truth labels is difficult, expensive, and time-consuming, classifying hyperspectral images (HSIs) with few training samples is a challenging problem. In this letter, we propose a novel semisupervised algorithm for the classification of hyperspectral data by training...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters 2018-02, Vol.15 (2), p.212-216
Main Authors: Zhan, Ying, Hu, Dan, Wang, Yuntao, Yu, Xianchuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-faaf10b31bd1eebb41ecd70dd5c75be260589280793f41c94bc1a2f6b2e3a38d3
cites cdi_FETCH-LOGICAL-c429t-faaf10b31bd1eebb41ecd70dd5c75be260589280793f41c94bc1a2f6b2e3a38d3
container_end_page 216
container_issue 2
container_start_page 212
container_title IEEE geoscience and remote sensing letters
container_volume 15
creator Zhan, Ying
Hu, Dan
Wang, Yuntao
Yu, Xianchuan
description Because the collection of ground-truth labels is difficult, expensive, and time-consuming, classifying hyperspectral images (HSIs) with few training samples is a challenging problem. In this letter, we propose a novel semisupervised algorithm for the classification of hyperspectral data by training a customized generative adversarial network (GAN) for hyperspectral data. The GAN constructs an adversarial game between a discriminator and a generator. The generator generates samples that are not distinguishable by the discriminator, and the discriminator determines whether or not a sample is composed of real data. We design a semisupervised framework for HSI data based on a 1-D GAN (HSGAN). This framework enables the automatic extraction of spectral features for HSI classification. When HSGAN is trained using unlabeled hyperspectral data, the generator can generate hyperspectral samples that are similar to the real data, while the discriminator contains the features, which can be used to classify hyperspectral data with only a small number of labeled samples. The performance of the HSGAN is evaluated on the Airborne Visible Infrared Imaging Spectrometer image data, and the results show that the proposed framework achieves very promising results with a small number of labeled samples.
doi_str_mv 10.1109/LGRS.2017.2780890
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8241773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8241773</ieee_id><sourcerecordid>2174543628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-faaf10b31bd1eebb41ecd70dd5c75be260589280793f41c94bc1a2f6b2e3a38d3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwseN6ayUeTPWrRtlAUrIJ4CdnsrKS23ZpsK_33ZmnxNC_D88zAS8g10AEALe5m49f5gFFQA6Y01QU9IT2QUudUKjjtspC5LPTHObmIcUEpE1qrHvmc48rH7QbDzkesssk-xbhB1wa7zKYr-4XZaGlj9LV3tvXNOnuwHZjCGNcY0m6H2X21S5oNPknP2P424TtekrPaLiNeHWefvD89vo0m-exlPB3dz3InWNHmtbU10JJDWQFiWQpAVylaVdIpWSIbUqkLpqkqeC3AFaJ0YFk9LBlyy3XF--T2cHcTmp8txtYsmm1Yp5eGgRJS8CHTiYID5UITY8DabIJf2bA3QE1XoekqNF2F5lhhcm4OjkfEf14zAUpx_gf4O28i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174543628</pqid></control><display><type>article</type><title>Semisupervised Hyperspectral Image Classification Based on Generative Adversarial Networks</title><source>IEEE Xplore (Online service)</source><creator>Zhan, Ying ; Hu, Dan ; Wang, Yuntao ; Yu, Xianchuan</creator><creatorcontrib>Zhan, Ying ; Hu, Dan ; Wang, Yuntao ; Yu, Xianchuan</creatorcontrib><description>Because the collection of ground-truth labels is difficult, expensive, and time-consuming, classifying hyperspectral images (HSIs) with few training samples is a challenging problem. In this letter, we propose a novel semisupervised algorithm for the classification of hyperspectral data by training a customized generative adversarial network (GAN) for hyperspectral data. The GAN constructs an adversarial game between a discriminator and a generator. The generator generates samples that are not distinguishable by the discriminator, and the discriminator determines whether or not a sample is composed of real data. We design a semisupervised framework for HSI data based on a 1-D GAN (HSGAN). This framework enables the automatic extraction of spectral features for HSI classification. When HSGAN is trained using unlabeled hyperspectral data, the generator can generate hyperspectral samples that are similar to the real data, while the discriminator contains the features, which can be used to classify hyperspectral data with only a small number of labeled samples. The performance of the HSGAN is evaluated on the Airborne Visible Infrared Imaging Spectrometer image data, and the results show that the proposed framework achieves very promising results with a small number of labeled samples.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2017.2780890</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Classification ; Data ; Data models ; Deep learning ; Feature extraction ; Frameworks ; Gallium nitride ; generative adversarial network (GAN) ; Generative adversarial networks ; Generators ; hyperspectral image (HSI) classification ; Hyperspectral imaging ; Image classification ; Imaging techniques ; Infrared imagery ; Infrared imaging ; Infrared spectrometers ; remote sensing ; Satellites ; semisupervised learning (SSL) ; Training</subject><ispartof>IEEE geoscience and remote sensing letters, 2018-02, Vol.15 (2), p.212-216</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-faaf10b31bd1eebb41ecd70dd5c75be260589280793f41c94bc1a2f6b2e3a38d3</citedby><cites>FETCH-LOGICAL-c429t-faaf10b31bd1eebb41ecd70dd5c75be260589280793f41c94bc1a2f6b2e3a38d3</cites><orcidid>0000-0001-8525-3661 ; 0000-0002-5768-6184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8241773$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhan, Ying</creatorcontrib><creatorcontrib>Hu, Dan</creatorcontrib><creatorcontrib>Wang, Yuntao</creatorcontrib><creatorcontrib>Yu, Xianchuan</creatorcontrib><title>Semisupervised Hyperspectral Image Classification Based on Generative Adversarial Networks</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Because the collection of ground-truth labels is difficult, expensive, and time-consuming, classifying hyperspectral images (HSIs) with few training samples is a challenging problem. In this letter, we propose a novel semisupervised algorithm for the classification of hyperspectral data by training a customized generative adversarial network (GAN) for hyperspectral data. The GAN constructs an adversarial game between a discriminator and a generator. The generator generates samples that are not distinguishable by the discriminator, and the discriminator determines whether or not a sample is composed of real data. We design a semisupervised framework for HSI data based on a 1-D GAN (HSGAN). This framework enables the automatic extraction of spectral features for HSI classification. When HSGAN is trained using unlabeled hyperspectral data, the generator can generate hyperspectral samples that are similar to the real data, while the discriminator contains the features, which can be used to classify hyperspectral data with only a small number of labeled samples. The performance of the HSGAN is evaluated on the Airborne Visible Infrared Imaging Spectrometer image data, and the results show that the proposed framework achieves very promising results with a small number of labeled samples.</description><subject>Classification</subject><subject>Data</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Frameworks</subject><subject>Gallium nitride</subject><subject>generative adversarial network (GAN)</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>hyperspectral image (HSI) classification</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Imaging techniques</subject><subject>Infrared imagery</subject><subject>Infrared imaging</subject><subject>Infrared spectrometers</subject><subject>remote sensing</subject><subject>Satellites</subject><subject>semisupervised learning (SSL)</subject><subject>Training</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKs_QLwseN6ayUeTPWrRtlAUrIJ4CdnsrKS23ZpsK_33ZmnxNC_D88zAS8g10AEALe5m49f5gFFQA6Y01QU9IT2QUudUKjjtspC5LPTHObmIcUEpE1qrHvmc48rH7QbDzkesssk-xbhB1wa7zKYr-4XZaGlj9LV3tvXNOnuwHZjCGNcY0m6H2X21S5oNPknP2P424TtekrPaLiNeHWefvD89vo0m-exlPB3dz3InWNHmtbU10JJDWQFiWQpAVylaVdIpWSIbUqkLpqkqeC3AFaJ0YFk9LBlyy3XF--T2cHcTmp8txtYsmm1Yp5eGgRJS8CHTiYID5UITY8DabIJf2bA3QE1XoekqNF2F5lhhcm4OjkfEf14zAUpx_gf4O28i</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Zhan, Ying</creator><creator>Hu, Dan</creator><creator>Wang, Yuntao</creator><creator>Yu, Xianchuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8525-3661</orcidid><orcidid>https://orcid.org/0000-0002-5768-6184</orcidid></search><sort><creationdate>20180201</creationdate><title>Semisupervised Hyperspectral Image Classification Based on Generative Adversarial Networks</title><author>Zhan, Ying ; Hu, Dan ; Wang, Yuntao ; Yu, Xianchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-faaf10b31bd1eebb41ecd70dd5c75be260589280793f41c94bc1a2f6b2e3a38d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classification</topic><topic>Data</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Frameworks</topic><topic>Gallium nitride</topic><topic>generative adversarial network (GAN)</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>hyperspectral image (HSI) classification</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Imaging techniques</topic><topic>Infrared imagery</topic><topic>Infrared imaging</topic><topic>Infrared spectrometers</topic><topic>remote sensing</topic><topic>Satellites</topic><topic>semisupervised learning (SSL)</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Ying</creatorcontrib><creatorcontrib>Hu, Dan</creatorcontrib><creatorcontrib>Wang, Yuntao</creatorcontrib><creatorcontrib>Yu, Xianchuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Ying</au><au>Hu, Dan</au><au>Wang, Yuntao</au><au>Yu, Xianchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semisupervised Hyperspectral Image Classification Based on Generative Adversarial Networks</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>15</volume><issue>2</issue><spage>212</spage><epage>216</epage><pages>212-216</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Because the collection of ground-truth labels is difficult, expensive, and time-consuming, classifying hyperspectral images (HSIs) with few training samples is a challenging problem. In this letter, we propose a novel semisupervised algorithm for the classification of hyperspectral data by training a customized generative adversarial network (GAN) for hyperspectral data. The GAN constructs an adversarial game between a discriminator and a generator. The generator generates samples that are not distinguishable by the discriminator, and the discriminator determines whether or not a sample is composed of real data. We design a semisupervised framework for HSI data based on a 1-D GAN (HSGAN). This framework enables the automatic extraction of spectral features for HSI classification. When HSGAN is trained using unlabeled hyperspectral data, the generator can generate hyperspectral samples that are similar to the real data, while the discriminator contains the features, which can be used to classify hyperspectral data with only a small number of labeled samples. The performance of the HSGAN is evaluated on the Airborne Visible Infrared Imaging Spectrometer image data, and the results show that the proposed framework achieves very promising results with a small number of labeled samples.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2017.2780890</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8525-3661</orcidid><orcidid>https://orcid.org/0000-0002-5768-6184</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2018-02, Vol.15 (2), p.212-216
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_8241773
source IEEE Xplore (Online service)
subjects Classification
Data
Data models
Deep learning
Feature extraction
Frameworks
Gallium nitride
generative adversarial network (GAN)
Generative adversarial networks
Generators
hyperspectral image (HSI) classification
Hyperspectral imaging
Image classification
Imaging techniques
Infrared imagery
Infrared imaging
Infrared spectrometers
remote sensing
Satellites
semisupervised learning (SSL)
Training
title Semisupervised Hyperspectral Image Classification Based on Generative Adversarial Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semisupervised%20Hyperspectral%20Image%20Classification%20Based%20on%20Generative%20Adversarial%20Networks&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Zhan,%20Ying&rft.date=2018-02-01&rft.volume=15&rft.issue=2&rft.spage=212&rft.epage=216&rft.pages=212-216&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2017.2780890&rft_dat=%3Cproquest_ieee_%3E2174543628%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-faaf10b31bd1eebb41ecd70dd5c75be260589280793f41c94bc1a2f6b2e3a38d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174543628&rft_id=info:pmid/&rft_ieee_id=8241773&rfr_iscdi=true