Loading…

Decentralized Adaptive Fuzzy Secure Control for Nonlinear Uncertain Interconnected Systems Against Intermittent DoS Attacks

Cyber-physical systems (CPSs) are naturally highly interconnected and complexly nonlinear. This paper investigates the problem of decentralized adaptive output feedback control for CPSs subject to intermittent denial-of-service (DoS) attacks. The considered CPSs are modeled as a class of nonlinear u...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics 2019-03, Vol.49 (3), p.827-838
Main Authors: An, Liwei, Yang, Guang-Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cyber-physical systems (CPSs) are naturally highly interconnected and complexly nonlinear. This paper investigates the problem of decentralized adaptive output feedback control for CPSs subject to intermittent denial-of-service (DoS) attacks. The considered CPSs are modeled as a class of nonlinear uncertain strict-feedback interconnected systems. When a DoS attack is active, all the state variables become unavailable and standard backstepping cannot be applied. To overcome this difficulty, a switching-type adaptive state estimator is constructed. Based on an improved average dwell time method incorporated by frequency and duration properties of DoS attacks, convex design conditions of controller parameters are derived in term of solving a set of linear matrix inequalities. The proposed controller guarantees that all closed-loop signals remain bounded, while the error signals converge to a small neighborhood of the origin. As an illustrative example, the proposed control scheme is applied to a power network system.
ISSN:2168-2267
2168-2275
DOI:10.1109/TCYB.2017.2787740