Loading…

Widening Viewing Angles of Automultiscopic Displays Using Refractive Inserts

Displays that can portray environments that are perceivable from multiple views are known as multiscopic displays. Some multiscopic displays enable realistic perception of 3D environments without the need for cumbersome mounts or fragile head-tracking algorithms. These automultiscopic displays caref...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on visualization and computer graphics 2018-04, Vol.24 (4), p.1554-1563
Main Authors: Geng Lyu, Xukun Shen, Komura, Taku, Subr, Kartic, Lijun Teng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Displays that can portray environments that are perceivable from multiple views are known as multiscopic displays. Some multiscopic displays enable realistic perception of 3D environments without the need for cumbersome mounts or fragile head-tracking algorithms. These automultiscopic displays carefully control the distribution of emitted light over space, direction (angle) and time so that even a static image displayed can encode parallax across viewing directions (Iightfield). This allows simultaneous observation by multiple viewers, each perceiving 3D from their own (correct) perspective. Currently, the illusion can only be effectively maintained over a narrow range of viewing angles. In this paper, we propose and analyze a simple solution to widen the range of viewing angles for automultiscopic displays that use parallax barriers. We propose the use of a refractive medium, with a high refractive index, between the display and parallax barriers. The inserted medium warps the exitant lightfield in a way that increases the potential viewing angle. We analyze the consequences of this warp and build a prototype with a 93% increase in the effective viewing angle.
ISSN:1077-2626
1941-0506
DOI:10.1109/TVCG.2018.2794599