Loading…

Multiagent Decision-Making Dynamics Inspired by Honeybees

When choosing between candidate nest sites, a honeybee swarm reliably chooses the most valuable site and even when faced with the choice between near-equal value sites, it makes highly efficient decisions. Value-sensitive decision-making is enabled by a distributed social effort among the honeybees,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on control of network systems 2018-06, Vol.5 (2), p.793-806
Main Authors: Gray, Rebecca, Franci, Alessio, Srivastava, Vaibhav, Ehrich Leonard, Naomi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:When choosing between candidate nest sites, a honeybee swarm reliably chooses the most valuable site and even when faced with the choice between near-equal value sites, it makes highly efficient decisions. Value-sensitive decision-making is enabled by a distributed social effort among the honeybees, and it leads to decision-making dynamics of the swarm that are remarkably robust to perturbation and adaptive to change. To explore and generalize these features to other networks, we design distributed multiagent network dynamics that exhibit a pitchfork bifurcation, ubiquitous in biological models of decision-making. Using tools of nonlinear dynamics, we show how the designed agent-based dynamics recover the high performing value-sensitive decisionmaking of the honeybees and rigorously connect an investigation of mechanisms of animal group decision-making to systematic, bioinspired control of multiagent network systems. We further present a distributed adaptive bifurcation control law and prove how it enhances the network decision-making performance beyond that observed in swarms.
ISSN:2325-5870
2325-5870
2372-2533
DOI:10.1109/TCNS.2018.2796301