Loading…
Multiagent Decision-Making Dynamics Inspired by Honeybees
When choosing between candidate nest sites, a honeybee swarm reliably chooses the most valuable site and even when faced with the choice between near-equal value sites, it makes highly efficient decisions. Value-sensitive decision-making is enabled by a distributed social effort among the honeybees,...
Saved in:
Published in: | IEEE transactions on control of network systems 2018-06, Vol.5 (2), p.793-806 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c352t-c30a9f5813092b632725a19f633940df2008923e2f86e8d24577a5895141dbfb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c352t-c30a9f5813092b632725a19f633940df2008923e2f86e8d24577a5895141dbfb3 |
container_end_page | 806 |
container_issue | 2 |
container_start_page | 793 |
container_title | IEEE transactions on control of network systems |
container_volume | 5 |
creator | Gray, Rebecca Franci, Alessio Srivastava, Vaibhav Ehrich Leonard, Naomi |
description | When choosing between candidate nest sites, a honeybee swarm reliably chooses the most valuable site and even when faced with the choice between near-equal value sites, it makes highly efficient decisions. Value-sensitive decision-making is enabled by a distributed social effort among the honeybees, and it leads to decision-making dynamics of the swarm that are remarkably robust to perturbation and adaptive to change. To explore and generalize these features to other networks, we design distributed multiagent network dynamics that exhibit a pitchfork bifurcation, ubiquitous in biological models of decision-making. Using tools of nonlinear dynamics, we show how the designed agent-based dynamics recover the high performing value-sensitive decisionmaking of the honeybees and rigorously connect an investigation of mechanisms of animal group decision-making to systematic, bioinspired control of multiagent network systems. We further present a distributed adaptive bifurcation control law and prove how it enhances the network decision-making performance beyond that observed in swarms. |
doi_str_mv | 10.1109/TCNS.2018.2796301 |
format | article |
fullrecord | <record><control><sourceid>liege_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8265165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8265165</ieee_id><sourcerecordid>oai_orbi_ulg_ac_be_2268_303248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-c30a9f5813092b632725a19f633940df2008923e2f86e8d24577a5895141dbfb3</originalsourceid><addsrcrecordid>eNpNkMFKw0AQhhdRsNQ-gHjJC6TOzmaT3aO0agutHqznZZPMhtU0KdlWyNubkiJeZv4f5pvDx9g9hznnoB93i7ePOQJXc8x0KoBfsQkKlLFUGVz_y7dsFsIXAHCUQxcTpren-uhtRc0xWlLhg2-beGu_fVNFy76xe1-EaN2Eg--ojPI-WrUN9TlRuGM3ztaBZpc9ZZ8vz7vFKt68v64XT5u4EBKPwwSrnVRcgMY8FZihtFy7VAidQOkQQGkUhE6lpEpMZJZZqbTkCS9zl4spE-Pf2lNFpu1yb37QtNaP-VRXxhYmJ4OYKiNAYKIGio9U0bUhdOTMofN72_WGgzlLM2dp5izNXKQNzMPIeCL6u1eYSp5K8Qvpk2YE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiagent Decision-Making Dynamics Inspired by Honeybees</title><source>IEEE Xplore (Online service)</source><creator>Gray, Rebecca ; Franci, Alessio ; Srivastava, Vaibhav ; Ehrich Leonard, Naomi</creator><creatorcontrib>Gray, Rebecca ; Franci, Alessio ; Srivastava, Vaibhav ; Ehrich Leonard, Naomi</creatorcontrib><description>When choosing between candidate nest sites, a honeybee swarm reliably chooses the most valuable site and even when faced with the choice between near-equal value sites, it makes highly efficient decisions. Value-sensitive decision-making is enabled by a distributed social effort among the honeybees, and it leads to decision-making dynamics of the swarm that are remarkably robust to perturbation and adaptive to change. To explore and generalize these features to other networks, we design distributed multiagent network dynamics that exhibit a pitchfork bifurcation, ubiquitous in biological models of decision-making. Using tools of nonlinear dynamics, we show how the designed agent-based dynamics recover the high performing value-sensitive decisionmaking of the honeybees and rigorously connect an investigation of mechanisms of animal group decision-making to systematic, bioinspired control of multiagent network systems. We further present a distributed adaptive bifurcation control law and prove how it enhances the network decision-making performance beyond that observed in swarms.</description><identifier>ISSN: 2325-5870</identifier><identifier>EISSN: 2325-5870</identifier><identifier>EISSN: 2372-2533</identifier><identifier>DOI: 10.1109/TCNS.2018.2796301</identifier><identifier>CODEN: ITCNAY</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Adaptive control ; Analytical models ; animal behavior ; Animals ; Bifurcation ; Bifurcation control ; Biological system modeling ; Computer Networks and Communications ; Control and Optimization ; Control and Systems Engineering ; decentralized control ; Decision making ; Engineering, computing & technology ; Ingénierie, informatique & technologie ; Multi-agent decision making ; Multiagent networks ; multiagent systems ; networked control systems ; nonlinear dynamical systems ; Pitch-fork bifurcations ; Robustness ; Signal Processing</subject><ispartof>IEEE transactions on control of network systems, 2018-06, Vol.5 (2), p.793-806</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-c30a9f5813092b632725a19f633940df2008923e2f86e8d24577a5895141dbfb3</citedby><cites>FETCH-LOGICAL-c352t-c30a9f5813092b632725a19f633940df2008923e2f86e8d24577a5895141dbfb3</cites><orcidid>0000-0002-3911-625X ; 0000-0002-5328-3871 ; 0000-0002-2682-779X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8265165$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Gray, Rebecca</creatorcontrib><creatorcontrib>Franci, Alessio</creatorcontrib><creatorcontrib>Srivastava, Vaibhav</creatorcontrib><creatorcontrib>Ehrich Leonard, Naomi</creatorcontrib><title>Multiagent Decision-Making Dynamics Inspired by Honeybees</title><title>IEEE transactions on control of network systems</title><addtitle>TCNS</addtitle><description>When choosing between candidate nest sites, a honeybee swarm reliably chooses the most valuable site and even when faced with the choice between near-equal value sites, it makes highly efficient decisions. Value-sensitive decision-making is enabled by a distributed social effort among the honeybees, and it leads to decision-making dynamics of the swarm that are remarkably robust to perturbation and adaptive to change. To explore and generalize these features to other networks, we design distributed multiagent network dynamics that exhibit a pitchfork bifurcation, ubiquitous in biological models of decision-making. Using tools of nonlinear dynamics, we show how the designed agent-based dynamics recover the high performing value-sensitive decisionmaking of the honeybees and rigorously connect an investigation of mechanisms of animal group decision-making to systematic, bioinspired control of multiagent network systems. We further present a distributed adaptive bifurcation control law and prove how it enhances the network decision-making performance beyond that observed in swarms.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Analytical models</subject><subject>animal behavior</subject><subject>Animals</subject><subject>Bifurcation</subject><subject>Bifurcation control</subject><subject>Biological system modeling</subject><subject>Computer Networks and Communications</subject><subject>Control and Optimization</subject><subject>Control and Systems Engineering</subject><subject>decentralized control</subject><subject>Decision making</subject><subject>Engineering, computing & technology</subject><subject>Ingénierie, informatique & technologie</subject><subject>Multi-agent decision making</subject><subject>Multiagent networks</subject><subject>multiagent systems</subject><subject>networked control systems</subject><subject>nonlinear dynamical systems</subject><subject>Pitch-fork bifurcations</subject><subject>Robustness</subject><subject>Signal Processing</subject><issn>2325-5870</issn><issn>2325-5870</issn><issn>2372-2533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkMFKw0AQhhdRsNQ-gHjJC6TOzmaT3aO0agutHqznZZPMhtU0KdlWyNubkiJeZv4f5pvDx9g9hznnoB93i7ePOQJXc8x0KoBfsQkKlLFUGVz_y7dsFsIXAHCUQxcTpren-uhtRc0xWlLhg2-beGu_fVNFy76xe1-EaN2Eg--ojPI-WrUN9TlRuGM3ztaBZpc9ZZ8vz7vFKt68v64XT5u4EBKPwwSrnVRcgMY8FZihtFy7VAidQOkQQGkUhE6lpEpMZJZZqbTkCS9zl4spE-Pf2lNFpu1yb37QtNaP-VRXxhYmJ4OYKiNAYKIGio9U0bUhdOTMofN72_WGgzlLM2dp5izNXKQNzMPIeCL6u1eYSp5K8Qvpk2YE</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Gray, Rebecca</creator><creator>Franci, Alessio</creator><creator>Srivastava, Vaibhav</creator><creator>Ehrich Leonard, Naomi</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers Inc</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>Q33</scope><orcidid>https://orcid.org/0000-0002-3911-625X</orcidid><orcidid>https://orcid.org/0000-0002-5328-3871</orcidid><orcidid>https://orcid.org/0000-0002-2682-779X</orcidid></search><sort><creationdate>201806</creationdate><title>Multiagent Decision-Making Dynamics Inspired by Honeybees</title><author>Gray, Rebecca ; Franci, Alessio ; Srivastava, Vaibhav ; Ehrich Leonard, Naomi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-c30a9f5813092b632725a19f633940df2008923e2f86e8d24577a5895141dbfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Analytical models</topic><topic>animal behavior</topic><topic>Animals</topic><topic>Bifurcation</topic><topic>Bifurcation control</topic><topic>Biological system modeling</topic><topic>Computer Networks and Communications</topic><topic>Control and Optimization</topic><topic>Control and Systems Engineering</topic><topic>decentralized control</topic><topic>Decision making</topic><topic>Engineering, computing & technology</topic><topic>Ingénierie, informatique & technologie</topic><topic>Multi-agent decision making</topic><topic>Multiagent networks</topic><topic>multiagent systems</topic><topic>networked control systems</topic><topic>nonlinear dynamical systems</topic><topic>Pitch-fork bifurcations</topic><topic>Robustness</topic><topic>Signal Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gray, Rebecca</creatorcontrib><creatorcontrib>Franci, Alessio</creatorcontrib><creatorcontrib>Srivastava, Vaibhav</creatorcontrib><creatorcontrib>Ehrich Leonard, Naomi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><jtitle>IEEE transactions on control of network systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gray, Rebecca</au><au>Franci, Alessio</au><au>Srivastava, Vaibhav</au><au>Ehrich Leonard, Naomi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiagent Decision-Making Dynamics Inspired by Honeybees</atitle><jtitle>IEEE transactions on control of network systems</jtitle><stitle>TCNS</stitle><date>2018-06</date><risdate>2018</risdate><volume>5</volume><issue>2</issue><spage>793</spage><epage>806</epage><pages>793-806</pages><issn>2325-5870</issn><eissn>2325-5870</eissn><eissn>2372-2533</eissn><coden>ITCNAY</coden><abstract>When choosing between candidate nest sites, a honeybee swarm reliably chooses the most valuable site and even when faced with the choice between near-equal value sites, it makes highly efficient decisions. Value-sensitive decision-making is enabled by a distributed social effort among the honeybees, and it leads to decision-making dynamics of the swarm that are remarkably robust to perturbation and adaptive to change. To explore and generalize these features to other networks, we design distributed multiagent network dynamics that exhibit a pitchfork bifurcation, ubiquitous in biological models of decision-making. Using tools of nonlinear dynamics, we show how the designed agent-based dynamics recover the high performing value-sensitive decisionmaking of the honeybees and rigorously connect an investigation of mechanisms of animal group decision-making to systematic, bioinspired control of multiagent network systems. We further present a distributed adaptive bifurcation control law and prove how it enhances the network decision-making performance beyond that observed in swarms.</abstract><pub>IEEE</pub><doi>10.1109/TCNS.2018.2796301</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3911-625X</orcidid><orcidid>https://orcid.org/0000-0002-5328-3871</orcidid><orcidid>https://orcid.org/0000-0002-2682-779X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2325-5870 |
ispartof | IEEE transactions on control of network systems, 2018-06, Vol.5 (2), p.793-806 |
issn | 2325-5870 2325-5870 2372-2533 |
language | eng |
recordid | cdi_ieee_primary_8265165 |
source | IEEE Xplore (Online service) |
subjects | Adaptation models Adaptive control Analytical models animal behavior Animals Bifurcation Bifurcation control Biological system modeling Computer Networks and Communications Control and Optimization Control and Systems Engineering decentralized control Decision making Engineering, computing & technology Ingénierie, informatique & technologie Multi-agent decision making Multiagent networks multiagent systems networked control systems nonlinear dynamical systems Pitch-fork bifurcations Robustness Signal Processing |
title | Multiagent Decision-Making Dynamics Inspired by Honeybees |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-liege_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiagent%20Decision-Making%20Dynamics%20Inspired%20by%20Honeybees&rft.jtitle=IEEE%20transactions%20on%20control%20of%20network%20systems&rft.au=Gray,%20Rebecca&rft.date=2018-06&rft.volume=5&rft.issue=2&rft.spage=793&rft.epage=806&rft.pages=793-806&rft.issn=2325-5870&rft.eissn=2325-5870&rft.coden=ITCNAY&rft_id=info:doi/10.1109/TCNS.2018.2796301&rft_dat=%3Cliege_ieee_%3Eoai_orbi_ulg_ac_be_2268_303248%3C/liege_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-c30a9f5813092b632725a19f633940df2008923e2f86e8d24577a5895141dbfb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8265165&rfr_iscdi=true |