Loading…

Multiagent Decision-Making Dynamics Inspired by Honeybees

When choosing between candidate nest sites, a honeybee swarm reliably chooses the most valuable site and even when faced with the choice between near-equal value sites, it makes highly efficient decisions. Value-sensitive decision-making is enabled by a distributed social effort among the honeybees,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on control of network systems 2018-06, Vol.5 (2), p.793-806
Main Authors: Gray, Rebecca, Franci, Alessio, Srivastava, Vaibhav, Ehrich Leonard, Naomi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-c30a9f5813092b632725a19f633940df2008923e2f86e8d24577a5895141dbfb3
cites cdi_FETCH-LOGICAL-c352t-c30a9f5813092b632725a19f633940df2008923e2f86e8d24577a5895141dbfb3
container_end_page 806
container_issue 2
container_start_page 793
container_title IEEE transactions on control of network systems
container_volume 5
creator Gray, Rebecca
Franci, Alessio
Srivastava, Vaibhav
Ehrich Leonard, Naomi
description When choosing between candidate nest sites, a honeybee swarm reliably chooses the most valuable site and even when faced with the choice between near-equal value sites, it makes highly efficient decisions. Value-sensitive decision-making is enabled by a distributed social effort among the honeybees, and it leads to decision-making dynamics of the swarm that are remarkably robust to perturbation and adaptive to change. To explore and generalize these features to other networks, we design distributed multiagent network dynamics that exhibit a pitchfork bifurcation, ubiquitous in biological models of decision-making. Using tools of nonlinear dynamics, we show how the designed agent-based dynamics recover the high performing value-sensitive decisionmaking of the honeybees and rigorously connect an investigation of mechanisms of animal group decision-making to systematic, bioinspired control of multiagent network systems. We further present a distributed adaptive bifurcation control law and prove how it enhances the network decision-making performance beyond that observed in swarms.
doi_str_mv 10.1109/TCNS.2018.2796301
format article
fullrecord <record><control><sourceid>liege_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8265165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8265165</ieee_id><sourcerecordid>oai_orbi_ulg_ac_be_2268_303248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-c30a9f5813092b632725a19f633940df2008923e2f86e8d24577a5895141dbfb3</originalsourceid><addsrcrecordid>eNpNkMFKw0AQhhdRsNQ-gHjJC6TOzmaT3aO0agutHqznZZPMhtU0KdlWyNubkiJeZv4f5pvDx9g9hznnoB93i7ePOQJXc8x0KoBfsQkKlLFUGVz_y7dsFsIXAHCUQxcTpren-uhtRc0xWlLhg2-beGu_fVNFy76xe1-EaN2Eg--ojPI-WrUN9TlRuGM3ztaBZpc9ZZ8vz7vFKt68v64XT5u4EBKPwwSrnVRcgMY8FZihtFy7VAidQOkQQGkUhE6lpEpMZJZZqbTkCS9zl4spE-Pf2lNFpu1yb37QtNaP-VRXxhYmJ4OYKiNAYKIGio9U0bUhdOTMofN72_WGgzlLM2dp5izNXKQNzMPIeCL6u1eYSp5K8Qvpk2YE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiagent Decision-Making Dynamics Inspired by Honeybees</title><source>IEEE Xplore (Online service)</source><creator>Gray, Rebecca ; Franci, Alessio ; Srivastava, Vaibhav ; Ehrich Leonard, Naomi</creator><creatorcontrib>Gray, Rebecca ; Franci, Alessio ; Srivastava, Vaibhav ; Ehrich Leonard, Naomi</creatorcontrib><description>When choosing between candidate nest sites, a honeybee swarm reliably chooses the most valuable site and even when faced with the choice between near-equal value sites, it makes highly efficient decisions. Value-sensitive decision-making is enabled by a distributed social effort among the honeybees, and it leads to decision-making dynamics of the swarm that are remarkably robust to perturbation and adaptive to change. To explore and generalize these features to other networks, we design distributed multiagent network dynamics that exhibit a pitchfork bifurcation, ubiquitous in biological models of decision-making. Using tools of nonlinear dynamics, we show how the designed agent-based dynamics recover the high performing value-sensitive decisionmaking of the honeybees and rigorously connect an investigation of mechanisms of animal group decision-making to systematic, bioinspired control of multiagent network systems. We further present a distributed adaptive bifurcation control law and prove how it enhances the network decision-making performance beyond that observed in swarms.</description><identifier>ISSN: 2325-5870</identifier><identifier>EISSN: 2325-5870</identifier><identifier>EISSN: 2372-2533</identifier><identifier>DOI: 10.1109/TCNS.2018.2796301</identifier><identifier>CODEN: ITCNAY</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Adaptive control ; Analytical models ; animal behavior ; Animals ; Bifurcation ; Bifurcation control ; Biological system modeling ; Computer Networks and Communications ; Control and Optimization ; Control and Systems Engineering ; decentralized control ; Decision making ; Engineering, computing &amp; technology ; Ingénierie, informatique &amp; technologie ; Multi-agent decision making ; Multiagent networks ; multiagent systems ; networked control systems ; nonlinear dynamical systems ; Pitch-fork bifurcations ; Robustness ; Signal Processing</subject><ispartof>IEEE transactions on control of network systems, 2018-06, Vol.5 (2), p.793-806</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-c30a9f5813092b632725a19f633940df2008923e2f86e8d24577a5895141dbfb3</citedby><cites>FETCH-LOGICAL-c352t-c30a9f5813092b632725a19f633940df2008923e2f86e8d24577a5895141dbfb3</cites><orcidid>0000-0002-3911-625X ; 0000-0002-5328-3871 ; 0000-0002-2682-779X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8265165$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Gray, Rebecca</creatorcontrib><creatorcontrib>Franci, Alessio</creatorcontrib><creatorcontrib>Srivastava, Vaibhav</creatorcontrib><creatorcontrib>Ehrich Leonard, Naomi</creatorcontrib><title>Multiagent Decision-Making Dynamics Inspired by Honeybees</title><title>IEEE transactions on control of network systems</title><addtitle>TCNS</addtitle><description>When choosing between candidate nest sites, a honeybee swarm reliably chooses the most valuable site and even when faced with the choice between near-equal value sites, it makes highly efficient decisions. Value-sensitive decision-making is enabled by a distributed social effort among the honeybees, and it leads to decision-making dynamics of the swarm that are remarkably robust to perturbation and adaptive to change. To explore and generalize these features to other networks, we design distributed multiagent network dynamics that exhibit a pitchfork bifurcation, ubiquitous in biological models of decision-making. Using tools of nonlinear dynamics, we show how the designed agent-based dynamics recover the high performing value-sensitive decisionmaking of the honeybees and rigorously connect an investigation of mechanisms of animal group decision-making to systematic, bioinspired control of multiagent network systems. We further present a distributed adaptive bifurcation control law and prove how it enhances the network decision-making performance beyond that observed in swarms.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Analytical models</subject><subject>animal behavior</subject><subject>Animals</subject><subject>Bifurcation</subject><subject>Bifurcation control</subject><subject>Biological system modeling</subject><subject>Computer Networks and Communications</subject><subject>Control and Optimization</subject><subject>Control and Systems Engineering</subject><subject>decentralized control</subject><subject>Decision making</subject><subject>Engineering, computing &amp; technology</subject><subject>Ingénierie, informatique &amp; technologie</subject><subject>Multi-agent decision making</subject><subject>Multiagent networks</subject><subject>multiagent systems</subject><subject>networked control systems</subject><subject>nonlinear dynamical systems</subject><subject>Pitch-fork bifurcations</subject><subject>Robustness</subject><subject>Signal Processing</subject><issn>2325-5870</issn><issn>2325-5870</issn><issn>2372-2533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkMFKw0AQhhdRsNQ-gHjJC6TOzmaT3aO0agutHqznZZPMhtU0KdlWyNubkiJeZv4f5pvDx9g9hznnoB93i7ePOQJXc8x0KoBfsQkKlLFUGVz_y7dsFsIXAHCUQxcTpren-uhtRc0xWlLhg2-beGu_fVNFy76xe1-EaN2Eg--ojPI-WrUN9TlRuGM3ztaBZpc9ZZ8vz7vFKt68v64XT5u4EBKPwwSrnVRcgMY8FZihtFy7VAidQOkQQGkUhE6lpEpMZJZZqbTkCS9zl4spE-Pf2lNFpu1yb37QtNaP-VRXxhYmJ4OYKiNAYKIGio9U0bUhdOTMofN72_WGgzlLM2dp5izNXKQNzMPIeCL6u1eYSp5K8Qvpk2YE</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Gray, Rebecca</creator><creator>Franci, Alessio</creator><creator>Srivastava, Vaibhav</creator><creator>Ehrich Leonard, Naomi</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers Inc</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>Q33</scope><orcidid>https://orcid.org/0000-0002-3911-625X</orcidid><orcidid>https://orcid.org/0000-0002-5328-3871</orcidid><orcidid>https://orcid.org/0000-0002-2682-779X</orcidid></search><sort><creationdate>201806</creationdate><title>Multiagent Decision-Making Dynamics Inspired by Honeybees</title><author>Gray, Rebecca ; Franci, Alessio ; Srivastava, Vaibhav ; Ehrich Leonard, Naomi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-c30a9f5813092b632725a19f633940df2008923e2f86e8d24577a5895141dbfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Analytical models</topic><topic>animal behavior</topic><topic>Animals</topic><topic>Bifurcation</topic><topic>Bifurcation control</topic><topic>Biological system modeling</topic><topic>Computer Networks and Communications</topic><topic>Control and Optimization</topic><topic>Control and Systems Engineering</topic><topic>decentralized control</topic><topic>Decision making</topic><topic>Engineering, computing &amp; technology</topic><topic>Ingénierie, informatique &amp; technologie</topic><topic>Multi-agent decision making</topic><topic>Multiagent networks</topic><topic>multiagent systems</topic><topic>networked control systems</topic><topic>nonlinear dynamical systems</topic><topic>Pitch-fork bifurcations</topic><topic>Robustness</topic><topic>Signal Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gray, Rebecca</creatorcontrib><creatorcontrib>Franci, Alessio</creatorcontrib><creatorcontrib>Srivastava, Vaibhav</creatorcontrib><creatorcontrib>Ehrich Leonard, Naomi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><jtitle>IEEE transactions on control of network systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gray, Rebecca</au><au>Franci, Alessio</au><au>Srivastava, Vaibhav</au><au>Ehrich Leonard, Naomi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiagent Decision-Making Dynamics Inspired by Honeybees</atitle><jtitle>IEEE transactions on control of network systems</jtitle><stitle>TCNS</stitle><date>2018-06</date><risdate>2018</risdate><volume>5</volume><issue>2</issue><spage>793</spage><epage>806</epage><pages>793-806</pages><issn>2325-5870</issn><eissn>2325-5870</eissn><eissn>2372-2533</eissn><coden>ITCNAY</coden><abstract>When choosing between candidate nest sites, a honeybee swarm reliably chooses the most valuable site and even when faced with the choice between near-equal value sites, it makes highly efficient decisions. Value-sensitive decision-making is enabled by a distributed social effort among the honeybees, and it leads to decision-making dynamics of the swarm that are remarkably robust to perturbation and adaptive to change. To explore and generalize these features to other networks, we design distributed multiagent network dynamics that exhibit a pitchfork bifurcation, ubiquitous in biological models of decision-making. Using tools of nonlinear dynamics, we show how the designed agent-based dynamics recover the high performing value-sensitive decisionmaking of the honeybees and rigorously connect an investigation of mechanisms of animal group decision-making to systematic, bioinspired control of multiagent network systems. We further present a distributed adaptive bifurcation control law and prove how it enhances the network decision-making performance beyond that observed in swarms.</abstract><pub>IEEE</pub><doi>10.1109/TCNS.2018.2796301</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3911-625X</orcidid><orcidid>https://orcid.org/0000-0002-5328-3871</orcidid><orcidid>https://orcid.org/0000-0002-2682-779X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2325-5870
ispartof IEEE transactions on control of network systems, 2018-06, Vol.5 (2), p.793-806
issn 2325-5870
2325-5870
2372-2533
language eng
recordid cdi_ieee_primary_8265165
source IEEE Xplore (Online service)
subjects Adaptation models
Adaptive control
Analytical models
animal behavior
Animals
Bifurcation
Bifurcation control
Biological system modeling
Computer Networks and Communications
Control and Optimization
Control and Systems Engineering
decentralized control
Decision making
Engineering, computing & technology
Ingénierie, informatique & technologie
Multi-agent decision making
Multiagent networks
multiagent systems
networked control systems
nonlinear dynamical systems
Pitch-fork bifurcations
Robustness
Signal Processing
title Multiagent Decision-Making Dynamics Inspired by Honeybees
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-liege_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiagent%20Decision-Making%20Dynamics%20Inspired%20by%20Honeybees&rft.jtitle=IEEE%20transactions%20on%20control%20of%20network%20systems&rft.au=Gray,%20Rebecca&rft.date=2018-06&rft.volume=5&rft.issue=2&rft.spage=793&rft.epage=806&rft.pages=793-806&rft.issn=2325-5870&rft.eissn=2325-5870&rft.coden=ITCNAY&rft_id=info:doi/10.1109/TCNS.2018.2796301&rft_dat=%3Cliege_ieee_%3Eoai_orbi_ulg_ac_be_2268_303248%3C/liege_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-c30a9f5813092b632725a19f633940df2008923e2f86e8d24577a5895141dbfb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8265165&rfr_iscdi=true