Loading…
ICDAR2017 Competition on the Classification of Medieval Handwritings in Latin Script
This paper presents the results of the ICDAR2017 Competition on the Classification of Medieval Handwritings in Latin Script (CLaMM), jointly organized by Computer Scientists and Humanists (paleographers). This work follows a competition at ICFHR2016 and aims at providing a rich annotated database of...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c135t-7b5473748b8f61555f62033c6a88d0675a9098f89ca5cb3f9bc256c28ba2a0913 |
---|---|
cites | |
container_end_page | 1376 |
container_issue | |
container_start_page | 1371 |
container_title | |
container_volume | 1 |
creator | Cloppet, Florence Eglin, Veronique Helias-Baron, Marlene Cuong Kieu Stutzmann, Dominique Vincent, Nicole |
description | This paper presents the results of the ICDAR2017 Competition on the Classification of Medieval Handwritings in Latin Script (CLaMM), jointly organized by Computer Scientists and Humanists (paleographers). This work follows a competition at ICFHR2016 and aims at providing a rich annotated database of European medieval manuscripts to the community on Handwriting Analysis and Recognition. We proposed four independent classification tasks which attracted 10 registered teams, with 6 submitted classifiers from 4 participants. Those classifiers are trained on a set of 3540 images with their ground truths. In task 1 (Script classification) and task 3 (Date classification), the classifiers have been evaluated by a test set of 2000 greyscale, tiff, 300 dpi images. In task 2 (Script classification) and task 4 (Date classification), the test set consists of 1000 images in different formats, resolutions and color representation. The best scores are respectively 85.2% for task 1, 76.5% for task 2, 59% for task 3, and 49.9% for task 4. An analysis based on the matrix of confusion of each classifier is also given. |
doi_str_mv | 10.1109/ICDAR.2017.224 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8270155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8270155</ieee_id><sourcerecordid>8270155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c135t-7b5473748b8f61555f62033c6a88d0675a9098f89ca5cb3f9bc256c28ba2a0913</originalsourceid><addsrcrecordid>eNotjF1LwzAYhaMguE1vvfEmf6D1TdJ8XY76sUFF2Ob1eJsmGum60hTFf291woEDh-c5hNwwyBkDe7cu75ebnAPTOefFGZkzKYwS0ig4JzMutM04K-CSzFP6AGDWWjUjuz_t16Ll8dD7MY7x2NEp47unZYspxRAdntZAn30T_Se2dIVd8zVMdPeWaOxoNSEd3boh9uMVuQjYJn_93wvy-viwK1dZ9fK0LpdV5piQY6ZrWWihC1OboJiUMigOQjiFxjSgtEQL1gRjHUpXi2Brx6Vy3NTIESwTC3J7-o3e-30_xAMO33vDNUxv4gcvBE2K</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>ICDAR2017 Competition on the Classification of Medieval Handwritings in Latin Script</title><source>IEEE Xplore All Conference Series</source><creator>Cloppet, Florence ; Eglin, Veronique ; Helias-Baron, Marlene ; Cuong Kieu ; Stutzmann, Dominique ; Vincent, Nicole</creator><creatorcontrib>Cloppet, Florence ; Eglin, Veronique ; Helias-Baron, Marlene ; Cuong Kieu ; Stutzmann, Dominique ; Vincent, Nicole</creatorcontrib><description>This paper presents the results of the ICDAR2017 Competition on the Classification of Medieval Handwritings in Latin Script (CLaMM), jointly organized by Computer Scientists and Humanists (paleographers). This work follows a competition at ICFHR2016 and aims at providing a rich annotated database of European medieval manuscripts to the community on Handwriting Analysis and Recognition. We proposed four independent classification tasks which attracted 10 registered teams, with 6 submitted classifiers from 4 participants. Those classifiers are trained on a set of 3540 images with their ground truths. In task 1 (Script classification) and task 3 (Date classification), the classifiers have been evaluated by a test set of 2000 greyscale, tiff, 300 dpi images. In task 2 (Script classification) and task 4 (Date classification), the test set consists of 1000 images in different formats, resolutions and color representation. The best scores are respectively 85.2% for task 1, 76.5% for task 2, 59% for task 3, and 49.9% for task 4. An analysis based on the matrix of confusion of each classifier is also given.</description><identifier>EISSN: 2379-2140</identifier><identifier>EISBN: 1538635860</identifier><identifier>EISBN: 9781538635865</identifier><identifier>DOI: 10.1109/ICDAR.2017.224</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Character recognition ; Europe ; Feature extraction ; Historical documents ; Image classification ; Image color analysis ; Image resolution ; Libraries ; Medieval Latin script classification ; Quantitative analysis ; Task analysis ; Training ; Training data</subject><ispartof>2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), 2017, Vol.1, p.1371-1376</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c135t-7b5473748b8f61555f62033c6a88d0675a9098f89ca5cb3f9bc256c28ba2a0913</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8270155$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8270155$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cloppet, Florence</creatorcontrib><creatorcontrib>Eglin, Veronique</creatorcontrib><creatorcontrib>Helias-Baron, Marlene</creatorcontrib><creatorcontrib>Cuong Kieu</creatorcontrib><creatorcontrib>Stutzmann, Dominique</creatorcontrib><creatorcontrib>Vincent, Nicole</creatorcontrib><title>ICDAR2017 Competition on the Classification of Medieval Handwritings in Latin Script</title><title>2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)</title><addtitle>ICDAR</addtitle><description>This paper presents the results of the ICDAR2017 Competition on the Classification of Medieval Handwritings in Latin Script (CLaMM), jointly organized by Computer Scientists and Humanists (paleographers). This work follows a competition at ICFHR2016 and aims at providing a rich annotated database of European medieval manuscripts to the community on Handwriting Analysis and Recognition. We proposed four independent classification tasks which attracted 10 registered teams, with 6 submitted classifiers from 4 participants. Those classifiers are trained on a set of 3540 images with their ground truths. In task 1 (Script classification) and task 3 (Date classification), the classifiers have been evaluated by a test set of 2000 greyscale, tiff, 300 dpi images. In task 2 (Script classification) and task 4 (Date classification), the test set consists of 1000 images in different formats, resolutions and color representation. The best scores are respectively 85.2% for task 1, 76.5% for task 2, 59% for task 3, and 49.9% for task 4. An analysis based on the matrix of confusion of each classifier is also given.</description><subject>Character recognition</subject><subject>Europe</subject><subject>Feature extraction</subject><subject>Historical documents</subject><subject>Image classification</subject><subject>Image color analysis</subject><subject>Image resolution</subject><subject>Libraries</subject><subject>Medieval Latin script classification</subject><subject>Quantitative analysis</subject><subject>Task analysis</subject><subject>Training</subject><subject>Training data</subject><issn>2379-2140</issn><isbn>1538635860</isbn><isbn>9781538635865</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjF1LwzAYhaMguE1vvfEmf6D1TdJ8XY76sUFF2Ob1eJsmGum60hTFf291woEDh-c5hNwwyBkDe7cu75ebnAPTOefFGZkzKYwS0ig4JzMutM04K-CSzFP6AGDWWjUjuz_t16Ll8dD7MY7x2NEp47unZYspxRAdntZAn30T_Se2dIVd8zVMdPeWaOxoNSEd3boh9uMVuQjYJn_93wvy-viwK1dZ9fK0LpdV5piQY6ZrWWihC1OboJiUMigOQjiFxjSgtEQL1gRjHUpXi2Brx6Vy3NTIESwTC3J7-o3e-30_xAMO33vDNUxv4gcvBE2K</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Cloppet, Florence</creator><creator>Eglin, Veronique</creator><creator>Helias-Baron, Marlene</creator><creator>Cuong Kieu</creator><creator>Stutzmann, Dominique</creator><creator>Vincent, Nicole</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201711</creationdate><title>ICDAR2017 Competition on the Classification of Medieval Handwritings in Latin Script</title><author>Cloppet, Florence ; Eglin, Veronique ; Helias-Baron, Marlene ; Cuong Kieu ; Stutzmann, Dominique ; Vincent, Nicole</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c135t-7b5473748b8f61555f62033c6a88d0675a9098f89ca5cb3f9bc256c28ba2a0913</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Character recognition</topic><topic>Europe</topic><topic>Feature extraction</topic><topic>Historical documents</topic><topic>Image classification</topic><topic>Image color analysis</topic><topic>Image resolution</topic><topic>Libraries</topic><topic>Medieval Latin script classification</topic><topic>Quantitative analysis</topic><topic>Task analysis</topic><topic>Training</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Cloppet, Florence</creatorcontrib><creatorcontrib>Eglin, Veronique</creatorcontrib><creatorcontrib>Helias-Baron, Marlene</creatorcontrib><creatorcontrib>Cuong Kieu</creatorcontrib><creatorcontrib>Stutzmann, Dominique</creatorcontrib><creatorcontrib>Vincent, Nicole</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cloppet, Florence</au><au>Eglin, Veronique</au><au>Helias-Baron, Marlene</au><au>Cuong Kieu</au><au>Stutzmann, Dominique</au><au>Vincent, Nicole</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>ICDAR2017 Competition on the Classification of Medieval Handwritings in Latin Script</atitle><btitle>2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)</btitle><stitle>ICDAR</stitle><date>2017-11</date><risdate>2017</risdate><volume>1</volume><spage>1371</spage><epage>1376</epage><pages>1371-1376</pages><eissn>2379-2140</eissn><eisbn>1538635860</eisbn><eisbn>9781538635865</eisbn><coden>IEEPAD</coden><abstract>This paper presents the results of the ICDAR2017 Competition on the Classification of Medieval Handwritings in Latin Script (CLaMM), jointly organized by Computer Scientists and Humanists (paleographers). This work follows a competition at ICFHR2016 and aims at providing a rich annotated database of European medieval manuscripts to the community on Handwriting Analysis and Recognition. We proposed four independent classification tasks which attracted 10 registered teams, with 6 submitted classifiers from 4 participants. Those classifiers are trained on a set of 3540 images with their ground truths. In task 1 (Script classification) and task 3 (Date classification), the classifiers have been evaluated by a test set of 2000 greyscale, tiff, 300 dpi images. In task 2 (Script classification) and task 4 (Date classification), the test set consists of 1000 images in different formats, resolutions and color representation. The best scores are respectively 85.2% for task 1, 76.5% for task 2, 59% for task 3, and 49.9% for task 4. An analysis based on the matrix of confusion of each classifier is also given.</abstract><pub>IEEE</pub><doi>10.1109/ICDAR.2017.224</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2379-2140 |
ispartof | 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), 2017, Vol.1, p.1371-1376 |
issn | 2379-2140 |
language | eng |
recordid | cdi_ieee_primary_8270155 |
source | IEEE Xplore All Conference Series |
subjects | Character recognition Europe Feature extraction Historical documents Image classification Image color analysis Image resolution Libraries Medieval Latin script classification Quantitative analysis Task analysis Training Training data |
title | ICDAR2017 Competition on the Classification of Medieval Handwritings in Latin Script |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A55%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=ICDAR2017%20Competition%20on%20the%20Classification%20of%20Medieval%20Handwritings%20in%20Latin%20Script&rft.btitle=2017%2014th%20IAPR%20International%20Conference%20on%20Document%20Analysis%20and%20Recognition%20(ICDAR)&rft.au=Cloppet,%20Florence&rft.date=2017-11&rft.volume=1&rft.spage=1371&rft.epage=1376&rft.pages=1371-1376&rft.eissn=2379-2140&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDAR.2017.224&rft.eisbn=1538635860&rft.eisbn_list=9781538635865&rft_dat=%3Cieee_CHZPO%3E8270155%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c135t-7b5473748b8f61555f62033c6a88d0675a9098f89ca5cb3f9bc256c28ba2a0913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8270155&rfr_iscdi=true |