Loading…

ICDAR2017 Competition on the Classification of Medieval Handwritings in Latin Script

This paper presents the results of the ICDAR2017 Competition on the Classification of Medieval Handwritings in Latin Script (CLaMM), jointly organized by Computer Scientists and Humanists (paleographers). This work follows a competition at ICFHR2016 and aims at providing a rich annotated database of...

Full description

Saved in:
Bibliographic Details
Main Authors: Cloppet, Florence, Eglin, Veronique, Helias-Baron, Marlene, Cuong Kieu, Stutzmann, Dominique, Vincent, Nicole
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c135t-7b5473748b8f61555f62033c6a88d0675a9098f89ca5cb3f9bc256c28ba2a0913
cites
container_end_page 1376
container_issue
container_start_page 1371
container_title
container_volume 1
creator Cloppet, Florence
Eglin, Veronique
Helias-Baron, Marlene
Cuong Kieu
Stutzmann, Dominique
Vincent, Nicole
description This paper presents the results of the ICDAR2017 Competition on the Classification of Medieval Handwritings in Latin Script (CLaMM), jointly organized by Computer Scientists and Humanists (paleographers). This work follows a competition at ICFHR2016 and aims at providing a rich annotated database of European medieval manuscripts to the community on Handwriting Analysis and Recognition. We proposed four independent classification tasks which attracted 10 registered teams, with 6 submitted classifiers from 4 participants. Those classifiers are trained on a set of 3540 images with their ground truths. In task 1 (Script classification) and task 3 (Date classification), the classifiers have been evaluated by a test set of 2000 greyscale, tiff, 300 dpi images. In task 2 (Script classification) and task 4 (Date classification), the test set consists of 1000 images in different formats, resolutions and color representation. The best scores are respectively 85.2% for task 1, 76.5% for task 2, 59% for task 3, and 49.9% for task 4. An analysis based on the matrix of confusion of each classifier is also given.
doi_str_mv 10.1109/ICDAR.2017.224
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8270155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8270155</ieee_id><sourcerecordid>8270155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c135t-7b5473748b8f61555f62033c6a88d0675a9098f89ca5cb3f9bc256c28ba2a0913</originalsourceid><addsrcrecordid>eNotjF1LwzAYhaMguE1vvfEmf6D1TdJ8XY76sUFF2Ob1eJsmGum60hTFf291woEDh-c5hNwwyBkDe7cu75ebnAPTOefFGZkzKYwS0ig4JzMutM04K-CSzFP6AGDWWjUjuz_t16Ll8dD7MY7x2NEp47unZYspxRAdntZAn30T_Se2dIVd8zVMdPeWaOxoNSEd3boh9uMVuQjYJn_93wvy-viwK1dZ9fK0LpdV5piQY6ZrWWihC1OboJiUMigOQjiFxjSgtEQL1gRjHUpXi2Brx6Vy3NTIESwTC3J7-o3e-30_xAMO33vDNUxv4gcvBE2K</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>ICDAR2017 Competition on the Classification of Medieval Handwritings in Latin Script</title><source>IEEE Xplore All Conference Series</source><creator>Cloppet, Florence ; Eglin, Veronique ; Helias-Baron, Marlene ; Cuong Kieu ; Stutzmann, Dominique ; Vincent, Nicole</creator><creatorcontrib>Cloppet, Florence ; Eglin, Veronique ; Helias-Baron, Marlene ; Cuong Kieu ; Stutzmann, Dominique ; Vincent, Nicole</creatorcontrib><description>This paper presents the results of the ICDAR2017 Competition on the Classification of Medieval Handwritings in Latin Script (CLaMM), jointly organized by Computer Scientists and Humanists (paleographers). This work follows a competition at ICFHR2016 and aims at providing a rich annotated database of European medieval manuscripts to the community on Handwriting Analysis and Recognition. We proposed four independent classification tasks which attracted 10 registered teams, with 6 submitted classifiers from 4 participants. Those classifiers are trained on a set of 3540 images with their ground truths. In task 1 (Script classification) and task 3 (Date classification), the classifiers have been evaluated by a test set of 2000 greyscale, tiff, 300 dpi images. In task 2 (Script classification) and task 4 (Date classification), the test set consists of 1000 images in different formats, resolutions and color representation. The best scores are respectively 85.2% for task 1, 76.5% for task 2, 59% for task 3, and 49.9% for task 4. An analysis based on the matrix of confusion of each classifier is also given.</description><identifier>EISSN: 2379-2140</identifier><identifier>EISBN: 1538635860</identifier><identifier>EISBN: 9781538635865</identifier><identifier>DOI: 10.1109/ICDAR.2017.224</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Character recognition ; Europe ; Feature extraction ; Historical documents ; Image classification ; Image color analysis ; Image resolution ; Libraries ; Medieval Latin script classification ; Quantitative analysis ; Task analysis ; Training ; Training data</subject><ispartof>2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), 2017, Vol.1, p.1371-1376</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c135t-7b5473748b8f61555f62033c6a88d0675a9098f89ca5cb3f9bc256c28ba2a0913</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8270155$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8270155$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cloppet, Florence</creatorcontrib><creatorcontrib>Eglin, Veronique</creatorcontrib><creatorcontrib>Helias-Baron, Marlene</creatorcontrib><creatorcontrib>Cuong Kieu</creatorcontrib><creatorcontrib>Stutzmann, Dominique</creatorcontrib><creatorcontrib>Vincent, Nicole</creatorcontrib><title>ICDAR2017 Competition on the Classification of Medieval Handwritings in Latin Script</title><title>2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)</title><addtitle>ICDAR</addtitle><description>This paper presents the results of the ICDAR2017 Competition on the Classification of Medieval Handwritings in Latin Script (CLaMM), jointly organized by Computer Scientists and Humanists (paleographers). This work follows a competition at ICFHR2016 and aims at providing a rich annotated database of European medieval manuscripts to the community on Handwriting Analysis and Recognition. We proposed four independent classification tasks which attracted 10 registered teams, with 6 submitted classifiers from 4 participants. Those classifiers are trained on a set of 3540 images with their ground truths. In task 1 (Script classification) and task 3 (Date classification), the classifiers have been evaluated by a test set of 2000 greyscale, tiff, 300 dpi images. In task 2 (Script classification) and task 4 (Date classification), the test set consists of 1000 images in different formats, resolutions and color representation. The best scores are respectively 85.2% for task 1, 76.5% for task 2, 59% for task 3, and 49.9% for task 4. An analysis based on the matrix of confusion of each classifier is also given.</description><subject>Character recognition</subject><subject>Europe</subject><subject>Feature extraction</subject><subject>Historical documents</subject><subject>Image classification</subject><subject>Image color analysis</subject><subject>Image resolution</subject><subject>Libraries</subject><subject>Medieval Latin script classification</subject><subject>Quantitative analysis</subject><subject>Task analysis</subject><subject>Training</subject><subject>Training data</subject><issn>2379-2140</issn><isbn>1538635860</isbn><isbn>9781538635865</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjF1LwzAYhaMguE1vvfEmf6D1TdJ8XY76sUFF2Ob1eJsmGum60hTFf291woEDh-c5hNwwyBkDe7cu75ebnAPTOefFGZkzKYwS0ig4JzMutM04K-CSzFP6AGDWWjUjuz_t16Ll8dD7MY7x2NEp47unZYspxRAdntZAn30T_Se2dIVd8zVMdPeWaOxoNSEd3boh9uMVuQjYJn_93wvy-viwK1dZ9fK0LpdV5piQY6ZrWWihC1OboJiUMigOQjiFxjSgtEQL1gRjHUpXi2Brx6Vy3NTIESwTC3J7-o3e-30_xAMO33vDNUxv4gcvBE2K</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Cloppet, Florence</creator><creator>Eglin, Veronique</creator><creator>Helias-Baron, Marlene</creator><creator>Cuong Kieu</creator><creator>Stutzmann, Dominique</creator><creator>Vincent, Nicole</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201711</creationdate><title>ICDAR2017 Competition on the Classification of Medieval Handwritings in Latin Script</title><author>Cloppet, Florence ; Eglin, Veronique ; Helias-Baron, Marlene ; Cuong Kieu ; Stutzmann, Dominique ; Vincent, Nicole</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c135t-7b5473748b8f61555f62033c6a88d0675a9098f89ca5cb3f9bc256c28ba2a0913</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Character recognition</topic><topic>Europe</topic><topic>Feature extraction</topic><topic>Historical documents</topic><topic>Image classification</topic><topic>Image color analysis</topic><topic>Image resolution</topic><topic>Libraries</topic><topic>Medieval Latin script classification</topic><topic>Quantitative analysis</topic><topic>Task analysis</topic><topic>Training</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Cloppet, Florence</creatorcontrib><creatorcontrib>Eglin, Veronique</creatorcontrib><creatorcontrib>Helias-Baron, Marlene</creatorcontrib><creatorcontrib>Cuong Kieu</creatorcontrib><creatorcontrib>Stutzmann, Dominique</creatorcontrib><creatorcontrib>Vincent, Nicole</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cloppet, Florence</au><au>Eglin, Veronique</au><au>Helias-Baron, Marlene</au><au>Cuong Kieu</au><au>Stutzmann, Dominique</au><au>Vincent, Nicole</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>ICDAR2017 Competition on the Classification of Medieval Handwritings in Latin Script</atitle><btitle>2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)</btitle><stitle>ICDAR</stitle><date>2017-11</date><risdate>2017</risdate><volume>1</volume><spage>1371</spage><epage>1376</epage><pages>1371-1376</pages><eissn>2379-2140</eissn><eisbn>1538635860</eisbn><eisbn>9781538635865</eisbn><coden>IEEPAD</coden><abstract>This paper presents the results of the ICDAR2017 Competition on the Classification of Medieval Handwritings in Latin Script (CLaMM), jointly organized by Computer Scientists and Humanists (paleographers). This work follows a competition at ICFHR2016 and aims at providing a rich annotated database of European medieval manuscripts to the community on Handwriting Analysis and Recognition. We proposed four independent classification tasks which attracted 10 registered teams, with 6 submitted classifiers from 4 participants. Those classifiers are trained on a set of 3540 images with their ground truths. In task 1 (Script classification) and task 3 (Date classification), the classifiers have been evaluated by a test set of 2000 greyscale, tiff, 300 dpi images. In task 2 (Script classification) and task 4 (Date classification), the test set consists of 1000 images in different formats, resolutions and color representation. The best scores are respectively 85.2% for task 1, 76.5% for task 2, 59% for task 3, and 49.9% for task 4. An analysis based on the matrix of confusion of each classifier is also given.</abstract><pub>IEEE</pub><doi>10.1109/ICDAR.2017.224</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2379-2140
ispartof 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), 2017, Vol.1, p.1371-1376
issn 2379-2140
language eng
recordid cdi_ieee_primary_8270155
source IEEE Xplore All Conference Series
subjects Character recognition
Europe
Feature extraction
Historical documents
Image classification
Image color analysis
Image resolution
Libraries
Medieval Latin script classification
Quantitative analysis
Task analysis
Training
Training data
title ICDAR2017 Competition on the Classification of Medieval Handwritings in Latin Script
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A55%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=ICDAR2017%20Competition%20on%20the%20Classification%20of%20Medieval%20Handwritings%20in%20Latin%20Script&rft.btitle=2017%2014th%20IAPR%20International%20Conference%20on%20Document%20Analysis%20and%20Recognition%20(ICDAR)&rft.au=Cloppet,%20Florence&rft.date=2017-11&rft.volume=1&rft.spage=1371&rft.epage=1376&rft.pages=1371-1376&rft.eissn=2379-2140&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDAR.2017.224&rft.eisbn=1538635860&rft.eisbn_list=9781538635865&rft_dat=%3Cieee_CHZPO%3E8270155%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c135t-7b5473748b8f61555f62033c6a88d0675a9098f89ca5cb3f9bc256c28ba2a0913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8270155&rfr_iscdi=true