Loading…
Operation pattern recognition via Mass data in bulk transmission grid
In bulk transmission grid, big quantity of data is accumulated, but is not effectively utilized. In this paper, a data-driven analysis framework for operation pattern recognition is proposed, which makes use of mass data in bulk transmission grid to dig deeper underlying information. The concept of...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Xianzhuang Liu Wei Hu Le Zheng Yong Min Xialing Xu Yong Li Rui Yu |
description | In bulk transmission grid, big quantity of data is accumulated, but is not effectively utilized. In this paper, a data-driven analysis framework for operation pattern recognition is proposed, which makes use of mass data in bulk transmission grid to dig deeper underlying information. The concept of operation pattern is put forward, and the two sub-patterns of the operation pattern are defined. Then procedure for operation pattern recognition is introduced, which adopts clustering as the main algorithm. Furthermore, the algorithm details are discussed. Finally the proposed method is tested on a real grid, visualized results are given. |
doi_str_mv | 10.1109/PESGM.2017.8273832 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8273832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8273832</ieee_id><sourcerecordid>8273832</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7c2a667394cde563aaeb36d36f5fd001d1fcc2bc9d6a4891e077c228d805eb893</originalsourceid><addsrcrecordid>eNotj91KAzEUhKMgWGtfQG_yArsmOZu_SylrFVoqqNflbJIt0Xa7JFHw7a3auRkYvhkYQm44qzln9u65fVmsasG4ro3QYECckSsuwSghuBDnZMJt01TWAlySWc7v7CjZaKXEhLTrMSQs8TDQEUsJaaApuMN2iH_ZV0S6wpypx4I0DrT73H3QknDI-5jzL7JN0V-Tix53OcxOPiVvD-3r_LFarhdP8_tlFbmWpdJOoFIabON8kAoQQwfKg-pl7xnjnvfOic5Zr7AxlgemjxVhvGEydMbClNz-78YQwmZMcY_pe3N6DT9DXExh</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Operation pattern recognition via Mass data in bulk transmission grid</title><source>IEEE Xplore All Conference Series</source><creator>Xianzhuang Liu ; Wei Hu ; Le Zheng ; Yong Min ; Xialing Xu ; Yong Li ; Rui Yu</creator><creatorcontrib>Xianzhuang Liu ; Wei Hu ; Le Zheng ; Yong Min ; Xialing Xu ; Yong Li ; Rui Yu</creatorcontrib><description>In bulk transmission grid, big quantity of data is accumulated, but is not effectively utilized. In this paper, a data-driven analysis framework for operation pattern recognition is proposed, which makes use of mass data in bulk transmission grid to dig deeper underlying information. The concept of operation pattern is put forward, and the two sub-patterns of the operation pattern are defined. Then procedure for operation pattern recognition is introduced, which adopts clustering as the main algorithm. Furthermore, the algorithm details are discussed. Finally the proposed method is tested on a real grid, visualized results are given.</description><identifier>EISSN: 1944-9933</identifier><identifier>EISBN: 1538622122</identifier><identifier>EISBN: 9781538622124</identifier><identifier>DOI: 10.1109/PESGM.2017.8273832</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bulk transmission grid ; clustering ; Clustering algorithms ; Clustering methods ; Data visualization ; data-driven analysis ; Load flow ; Maintenance engineering ; operation pattern ; Power system stability</subject><ispartof>2017 IEEE Power & Energy Society General Meeting, 2017, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8273832$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8273832$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xianzhuang Liu</creatorcontrib><creatorcontrib>Wei Hu</creatorcontrib><creatorcontrib>Le Zheng</creatorcontrib><creatorcontrib>Yong Min</creatorcontrib><creatorcontrib>Xialing Xu</creatorcontrib><creatorcontrib>Yong Li</creatorcontrib><creatorcontrib>Rui Yu</creatorcontrib><title>Operation pattern recognition via Mass data in bulk transmission grid</title><title>2017 IEEE Power & Energy Society General Meeting</title><addtitle>PESGM</addtitle><description>In bulk transmission grid, big quantity of data is accumulated, but is not effectively utilized. In this paper, a data-driven analysis framework for operation pattern recognition is proposed, which makes use of mass data in bulk transmission grid to dig deeper underlying information. The concept of operation pattern is put forward, and the two sub-patterns of the operation pattern are defined. Then procedure for operation pattern recognition is introduced, which adopts clustering as the main algorithm. Furthermore, the algorithm details are discussed. Finally the proposed method is tested on a real grid, visualized results are given.</description><subject>Bulk transmission grid</subject><subject>clustering</subject><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>Data visualization</subject><subject>data-driven analysis</subject><subject>Load flow</subject><subject>Maintenance engineering</subject><subject>operation pattern</subject><subject>Power system stability</subject><issn>1944-9933</issn><isbn>1538622122</isbn><isbn>9781538622124</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj91KAzEUhKMgWGtfQG_yArsmOZu_SylrFVoqqNflbJIt0Xa7JFHw7a3auRkYvhkYQm44qzln9u65fVmsasG4ro3QYECckSsuwSghuBDnZMJt01TWAlySWc7v7CjZaKXEhLTrMSQs8TDQEUsJaaApuMN2iH_ZV0S6wpypx4I0DrT73H3QknDI-5jzL7JN0V-Tix53OcxOPiVvD-3r_LFarhdP8_tlFbmWpdJOoFIabON8kAoQQwfKg-pl7xnjnvfOic5Zr7AxlgemjxVhvGEydMbClNz-78YQwmZMcY_pe3N6DT9DXExh</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Xianzhuang Liu</creator><creator>Wei Hu</creator><creator>Le Zheng</creator><creator>Yong Min</creator><creator>Xialing Xu</creator><creator>Yong Li</creator><creator>Rui Yu</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201707</creationdate><title>Operation pattern recognition via Mass data in bulk transmission grid</title><author>Xianzhuang Liu ; Wei Hu ; Le Zheng ; Yong Min ; Xialing Xu ; Yong Li ; Rui Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7c2a667394cde563aaeb36d36f5fd001d1fcc2bc9d6a4891e077c228d805eb893</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bulk transmission grid</topic><topic>clustering</topic><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>Data visualization</topic><topic>data-driven analysis</topic><topic>Load flow</topic><topic>Maintenance engineering</topic><topic>operation pattern</topic><topic>Power system stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Xianzhuang Liu</creatorcontrib><creatorcontrib>Wei Hu</creatorcontrib><creatorcontrib>Le Zheng</creatorcontrib><creatorcontrib>Yong Min</creatorcontrib><creatorcontrib>Xialing Xu</creatorcontrib><creatorcontrib>Yong Li</creatorcontrib><creatorcontrib>Rui Yu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xianzhuang Liu</au><au>Wei Hu</au><au>Le Zheng</au><au>Yong Min</au><au>Xialing Xu</au><au>Yong Li</au><au>Rui Yu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Operation pattern recognition via Mass data in bulk transmission grid</atitle><btitle>2017 IEEE Power & Energy Society General Meeting</btitle><stitle>PESGM</stitle><date>2017-07</date><risdate>2017</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>1944-9933</eissn><eisbn>1538622122</eisbn><eisbn>9781538622124</eisbn><abstract>In bulk transmission grid, big quantity of data is accumulated, but is not effectively utilized. In this paper, a data-driven analysis framework for operation pattern recognition is proposed, which makes use of mass data in bulk transmission grid to dig deeper underlying information. The concept of operation pattern is put forward, and the two sub-patterns of the operation pattern are defined. Then procedure for operation pattern recognition is introduced, which adopts clustering as the main algorithm. Furthermore, the algorithm details are discussed. Finally the proposed method is tested on a real grid, visualized results are given.</abstract><pub>IEEE</pub><doi>10.1109/PESGM.2017.8273832</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1944-9933 |
ispartof | 2017 IEEE Power & Energy Society General Meeting, 2017, p.1-5 |
issn | 1944-9933 |
language | eng |
recordid | cdi_ieee_primary_8273832 |
source | IEEE Xplore All Conference Series |
subjects | Bulk transmission grid clustering Clustering algorithms Clustering methods Data visualization data-driven analysis Load flow Maintenance engineering operation pattern Power system stability |
title | Operation pattern recognition via Mass data in bulk transmission grid |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Operation%20pattern%20recognition%20via%20Mass%20data%20in%20bulk%20transmission%20grid&rft.btitle=2017%20IEEE%20Power%20&%20Energy%20Society%20General%20Meeting&rft.au=Xianzhuang%20Liu&rft.date=2017-07&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=1944-9933&rft_id=info:doi/10.1109/PESGM.2017.8273832&rft.eisbn=1538622122&rft.eisbn_list=9781538622124&rft_dat=%3Cieee_CHZPO%3E8273832%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-7c2a667394cde563aaeb36d36f5fd001d1fcc2bc9d6a4891e077c228d805eb893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8273832&rfr_iscdi=true |