Loading…

Operation pattern recognition via Mass data in bulk transmission grid

In bulk transmission grid, big quantity of data is accumulated, but is not effectively utilized. In this paper, a data-driven analysis framework for operation pattern recognition is proposed, which makes use of mass data in bulk transmission grid to dig deeper underlying information. The concept of...

Full description

Saved in:
Bibliographic Details
Main Authors: Xianzhuang Liu, Wei Hu, Le Zheng, Yong Min, Xialing Xu, Yong Li, Rui Yu
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Xianzhuang Liu
Wei Hu
Le Zheng
Yong Min
Xialing Xu
Yong Li
Rui Yu
description In bulk transmission grid, big quantity of data is accumulated, but is not effectively utilized. In this paper, a data-driven analysis framework for operation pattern recognition is proposed, which makes use of mass data in bulk transmission grid to dig deeper underlying information. The concept of operation pattern is put forward, and the two sub-patterns of the operation pattern are defined. Then procedure for operation pattern recognition is introduced, which adopts clustering as the main algorithm. Furthermore, the algorithm details are discussed. Finally the proposed method is tested on a real grid, visualized results are given.
doi_str_mv 10.1109/PESGM.2017.8273832
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8273832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8273832</ieee_id><sourcerecordid>8273832</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7c2a667394cde563aaeb36d36f5fd001d1fcc2bc9d6a4891e077c228d805eb893</originalsourceid><addsrcrecordid>eNotj91KAzEUhKMgWGtfQG_yArsmOZu_SylrFVoqqNflbJIt0Xa7JFHw7a3auRkYvhkYQm44qzln9u65fVmsasG4ro3QYECckSsuwSghuBDnZMJt01TWAlySWc7v7CjZaKXEhLTrMSQs8TDQEUsJaaApuMN2iH_ZV0S6wpypx4I0DrT73H3QknDI-5jzL7JN0V-Tix53OcxOPiVvD-3r_LFarhdP8_tlFbmWpdJOoFIabON8kAoQQwfKg-pl7xnjnvfOic5Zr7AxlgemjxVhvGEydMbClNz-78YQwmZMcY_pe3N6DT9DXExh</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Operation pattern recognition via Mass data in bulk transmission grid</title><source>IEEE Xplore All Conference Series</source><creator>Xianzhuang Liu ; Wei Hu ; Le Zheng ; Yong Min ; Xialing Xu ; Yong Li ; Rui Yu</creator><creatorcontrib>Xianzhuang Liu ; Wei Hu ; Le Zheng ; Yong Min ; Xialing Xu ; Yong Li ; Rui Yu</creatorcontrib><description>In bulk transmission grid, big quantity of data is accumulated, but is not effectively utilized. In this paper, a data-driven analysis framework for operation pattern recognition is proposed, which makes use of mass data in bulk transmission grid to dig deeper underlying information. The concept of operation pattern is put forward, and the two sub-patterns of the operation pattern are defined. Then procedure for operation pattern recognition is introduced, which adopts clustering as the main algorithm. Furthermore, the algorithm details are discussed. Finally the proposed method is tested on a real grid, visualized results are given.</description><identifier>EISSN: 1944-9933</identifier><identifier>EISBN: 1538622122</identifier><identifier>EISBN: 9781538622124</identifier><identifier>DOI: 10.1109/PESGM.2017.8273832</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bulk transmission grid ; clustering ; Clustering algorithms ; Clustering methods ; Data visualization ; data-driven analysis ; Load flow ; Maintenance engineering ; operation pattern ; Power system stability</subject><ispartof>2017 IEEE Power &amp; Energy Society General Meeting, 2017, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8273832$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8273832$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xianzhuang Liu</creatorcontrib><creatorcontrib>Wei Hu</creatorcontrib><creatorcontrib>Le Zheng</creatorcontrib><creatorcontrib>Yong Min</creatorcontrib><creatorcontrib>Xialing Xu</creatorcontrib><creatorcontrib>Yong Li</creatorcontrib><creatorcontrib>Rui Yu</creatorcontrib><title>Operation pattern recognition via Mass data in bulk transmission grid</title><title>2017 IEEE Power &amp; Energy Society General Meeting</title><addtitle>PESGM</addtitle><description>In bulk transmission grid, big quantity of data is accumulated, but is not effectively utilized. In this paper, a data-driven analysis framework for operation pattern recognition is proposed, which makes use of mass data in bulk transmission grid to dig deeper underlying information. The concept of operation pattern is put forward, and the two sub-patterns of the operation pattern are defined. Then procedure for operation pattern recognition is introduced, which adopts clustering as the main algorithm. Furthermore, the algorithm details are discussed. Finally the proposed method is tested on a real grid, visualized results are given.</description><subject>Bulk transmission grid</subject><subject>clustering</subject><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>Data visualization</subject><subject>data-driven analysis</subject><subject>Load flow</subject><subject>Maintenance engineering</subject><subject>operation pattern</subject><subject>Power system stability</subject><issn>1944-9933</issn><isbn>1538622122</isbn><isbn>9781538622124</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj91KAzEUhKMgWGtfQG_yArsmOZu_SylrFVoqqNflbJIt0Xa7JFHw7a3auRkYvhkYQm44qzln9u65fVmsasG4ro3QYECckSsuwSghuBDnZMJt01TWAlySWc7v7CjZaKXEhLTrMSQs8TDQEUsJaaApuMN2iH_ZV0S6wpypx4I0DrT73H3QknDI-5jzL7JN0V-Tix53OcxOPiVvD-3r_LFarhdP8_tlFbmWpdJOoFIabON8kAoQQwfKg-pl7xnjnvfOic5Zr7AxlgemjxVhvGEydMbClNz-78YQwmZMcY_pe3N6DT9DXExh</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Xianzhuang Liu</creator><creator>Wei Hu</creator><creator>Le Zheng</creator><creator>Yong Min</creator><creator>Xialing Xu</creator><creator>Yong Li</creator><creator>Rui Yu</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201707</creationdate><title>Operation pattern recognition via Mass data in bulk transmission grid</title><author>Xianzhuang Liu ; Wei Hu ; Le Zheng ; Yong Min ; Xialing Xu ; Yong Li ; Rui Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7c2a667394cde563aaeb36d36f5fd001d1fcc2bc9d6a4891e077c228d805eb893</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bulk transmission grid</topic><topic>clustering</topic><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>Data visualization</topic><topic>data-driven analysis</topic><topic>Load flow</topic><topic>Maintenance engineering</topic><topic>operation pattern</topic><topic>Power system stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Xianzhuang Liu</creatorcontrib><creatorcontrib>Wei Hu</creatorcontrib><creatorcontrib>Le Zheng</creatorcontrib><creatorcontrib>Yong Min</creatorcontrib><creatorcontrib>Xialing Xu</creatorcontrib><creatorcontrib>Yong Li</creatorcontrib><creatorcontrib>Rui Yu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xianzhuang Liu</au><au>Wei Hu</au><au>Le Zheng</au><au>Yong Min</au><au>Xialing Xu</au><au>Yong Li</au><au>Rui Yu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Operation pattern recognition via Mass data in bulk transmission grid</atitle><btitle>2017 IEEE Power &amp; Energy Society General Meeting</btitle><stitle>PESGM</stitle><date>2017-07</date><risdate>2017</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>1944-9933</eissn><eisbn>1538622122</eisbn><eisbn>9781538622124</eisbn><abstract>In bulk transmission grid, big quantity of data is accumulated, but is not effectively utilized. In this paper, a data-driven analysis framework for operation pattern recognition is proposed, which makes use of mass data in bulk transmission grid to dig deeper underlying information. The concept of operation pattern is put forward, and the two sub-patterns of the operation pattern are defined. Then procedure for operation pattern recognition is introduced, which adopts clustering as the main algorithm. Furthermore, the algorithm details are discussed. Finally the proposed method is tested on a real grid, visualized results are given.</abstract><pub>IEEE</pub><doi>10.1109/PESGM.2017.8273832</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1944-9933
ispartof 2017 IEEE Power & Energy Society General Meeting, 2017, p.1-5
issn 1944-9933
language eng
recordid cdi_ieee_primary_8273832
source IEEE Xplore All Conference Series
subjects Bulk transmission grid
clustering
Clustering algorithms
Clustering methods
Data visualization
data-driven analysis
Load flow
Maintenance engineering
operation pattern
Power system stability
title Operation pattern recognition via Mass data in bulk transmission grid
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Operation%20pattern%20recognition%20via%20Mass%20data%20in%20bulk%20transmission%20grid&rft.btitle=2017%20IEEE%20Power%20&%20Energy%20Society%20General%20Meeting&rft.au=Xianzhuang%20Liu&rft.date=2017-07&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=1944-9933&rft_id=info:doi/10.1109/PESGM.2017.8273832&rft.eisbn=1538622122&rft.eisbn_list=9781538622124&rft_dat=%3Cieee_CHZPO%3E8273832%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-7c2a667394cde563aaeb36d36f5fd001d1fcc2bc9d6a4891e077c228d805eb893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8273832&rfr_iscdi=true