Loading…

A parallel approach for multi-contingency transient stability constrained optimal power flow

Large-scale multi-contingency transient stability optimal power flow (TSCOPF) is a hard problem due to its high computational intensity. This paper presents a new contingency-level parallel approach to solve TSCOPF on multi-core infrastructure. By utilizing the recursive reduced-order decoupling alg...

Full description

Saved in:
Bibliographic Details
Main Authors: Yude Yang, Wentai Liu, Jun Deng, Hui Liu, Hua Wei, Tingting Wang
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Yude Yang
Wentai Liu
Jun Deng
Hui Liu
Hua Wei
Tingting Wang
description Large-scale multi-contingency transient stability optimal power flow (TSCOPF) is a hard problem due to its high computational intensity. This paper presents a new contingency-level parallel approach to solve TSCOPF on multi-core infrastructure. By utilizing the recursive reduced-order decoupling algorithm, the proposed parallel implementation makes each contingency being handled independently on CPU cores. The approach is implemented in client-workers parallelism and reliefs computation burden by decomposing contingencies. Case studies show that this parallel approach reduces computational time and expands with ease as the number of contingencies increases.
doi_str_mv 10.1109/PESGM.2017.8274625
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8274625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8274625</ieee_id><sourcerecordid>8274625</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ecbdf608d4ba5197a1237291d70ae1ecd14e16f120294038c25566e950f4168d3</originalsourceid><addsrcrecordid>eNotkN1KAzEUhKMgWGtfQG_yAltzTv42l6XUVqgoqHdCSXfPaiTdXbKR0rd3wc7NwHwwDMPYHYg5gHAPr6u39fMcBdh5iVYZ1BfsBrQsDSIgXrIJOKUK56S8ZrNh-BGjtLLG4IR9Lnjvk4-RIvd9nzpfffOmS_zwG3Moqq7Nof2itjrxnHw7BGozH7LfhxjyiY98GPPQUs27PoeDj7zvjpR4E7vjLbtqfBxodvYp-3hcvS83xfZl_bRcbIsAVueCqn3dGFHWau81OOsBpUUHtRWegKoaFIFpAAU6JWRZodbGkNOiUWDKWk7Z_X9vIKJdn8YZ6bQ7nyH_AADmVMM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A parallel approach for multi-contingency transient stability constrained optimal power flow</title><source>IEEE Xplore All Conference Series</source><creator>Yude Yang ; Wentai Liu ; Jun Deng ; Hui Liu ; Hua Wei ; Tingting Wang</creator><creatorcontrib>Yude Yang ; Wentai Liu ; Jun Deng ; Hui Liu ; Hua Wei ; Tingting Wang</creatorcontrib><description>Large-scale multi-contingency transient stability optimal power flow (TSCOPF) is a hard problem due to its high computational intensity. This paper presents a new contingency-level parallel approach to solve TSCOPF on multi-core infrastructure. By utilizing the recursive reduced-order decoupling algorithm, the proposed parallel implementation makes each contingency being handled independently on CPU cores. The approach is implemented in client-workers parallelism and reliefs computation burden by decomposing contingencies. Case studies show that this parallel approach reduces computational time and expands with ease as the number of contingencies increases.</description><identifier>EISSN: 1944-9933</identifier><identifier>EISBN: 1538622122</identifier><identifier>EISBN: 9781538622124</identifier><identifier>DOI: 10.1109/PESGM.2017.8274625</identifier><language>eng</language><publisher>IEEE</publisher><subject>Generators ; Mathematical model ; Numerical stability ; Power system stability ; Thermal stability ; Transient analysis</subject><ispartof>2017 IEEE Power &amp; Energy Society General Meeting, 2017, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8274625$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8274625$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yude Yang</creatorcontrib><creatorcontrib>Wentai Liu</creatorcontrib><creatorcontrib>Jun Deng</creatorcontrib><creatorcontrib>Hui Liu</creatorcontrib><creatorcontrib>Hua Wei</creatorcontrib><creatorcontrib>Tingting Wang</creatorcontrib><title>A parallel approach for multi-contingency transient stability constrained optimal power flow</title><title>2017 IEEE Power &amp; Energy Society General Meeting</title><addtitle>PESGM</addtitle><description>Large-scale multi-contingency transient stability optimal power flow (TSCOPF) is a hard problem due to its high computational intensity. This paper presents a new contingency-level parallel approach to solve TSCOPF on multi-core infrastructure. By utilizing the recursive reduced-order decoupling algorithm, the proposed parallel implementation makes each contingency being handled independently on CPU cores. The approach is implemented in client-workers parallelism and reliefs computation burden by decomposing contingencies. Case studies show that this parallel approach reduces computational time and expands with ease as the number of contingencies increases.</description><subject>Generators</subject><subject>Mathematical model</subject><subject>Numerical stability</subject><subject>Power system stability</subject><subject>Thermal stability</subject><subject>Transient analysis</subject><issn>1944-9933</issn><isbn>1538622122</isbn><isbn>9781538622124</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkN1KAzEUhKMgWGtfQG_yAltzTv42l6XUVqgoqHdCSXfPaiTdXbKR0rd3wc7NwHwwDMPYHYg5gHAPr6u39fMcBdh5iVYZ1BfsBrQsDSIgXrIJOKUK56S8ZrNh-BGjtLLG4IR9Lnjvk4-RIvd9nzpfffOmS_zwG3Moqq7Nof2itjrxnHw7BGozH7LfhxjyiY98GPPQUs27PoeDj7zvjpR4E7vjLbtqfBxodvYp-3hcvS83xfZl_bRcbIsAVueCqn3dGFHWau81OOsBpUUHtRWegKoaFIFpAAU6JWRZodbGkNOiUWDKWk7Z_X9vIKJdn8YZ6bQ7nyH_AADmVMM</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Yude Yang</creator><creator>Wentai Liu</creator><creator>Jun Deng</creator><creator>Hui Liu</creator><creator>Hua Wei</creator><creator>Tingting Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201707</creationdate><title>A parallel approach for multi-contingency transient stability constrained optimal power flow</title><author>Yude Yang ; Wentai Liu ; Jun Deng ; Hui Liu ; Hua Wei ; Tingting Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ecbdf608d4ba5197a1237291d70ae1ecd14e16f120294038c25566e950f4168d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Generators</topic><topic>Mathematical model</topic><topic>Numerical stability</topic><topic>Power system stability</topic><topic>Thermal stability</topic><topic>Transient analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Yude Yang</creatorcontrib><creatorcontrib>Wentai Liu</creatorcontrib><creatorcontrib>Jun Deng</creatorcontrib><creatorcontrib>Hui Liu</creatorcontrib><creatorcontrib>Hua Wei</creatorcontrib><creatorcontrib>Tingting Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yude Yang</au><au>Wentai Liu</au><au>Jun Deng</au><au>Hui Liu</au><au>Hua Wei</au><au>Tingting Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A parallel approach for multi-contingency transient stability constrained optimal power flow</atitle><btitle>2017 IEEE Power &amp; Energy Society General Meeting</btitle><stitle>PESGM</stitle><date>2017-07</date><risdate>2017</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>1944-9933</eissn><eisbn>1538622122</eisbn><eisbn>9781538622124</eisbn><abstract>Large-scale multi-contingency transient stability optimal power flow (TSCOPF) is a hard problem due to its high computational intensity. This paper presents a new contingency-level parallel approach to solve TSCOPF on multi-core infrastructure. By utilizing the recursive reduced-order decoupling algorithm, the proposed parallel implementation makes each contingency being handled independently on CPU cores. The approach is implemented in client-workers parallelism and reliefs computation burden by decomposing contingencies. Case studies show that this parallel approach reduces computational time and expands with ease as the number of contingencies increases.</abstract><pub>IEEE</pub><doi>10.1109/PESGM.2017.8274625</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1944-9933
ispartof 2017 IEEE Power & Energy Society General Meeting, 2017, p.1-5
issn 1944-9933
language eng
recordid cdi_ieee_primary_8274625
source IEEE Xplore All Conference Series
subjects Generators
Mathematical model
Numerical stability
Power system stability
Thermal stability
Transient analysis
title A parallel approach for multi-contingency transient stability constrained optimal power flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A06%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20parallel%20approach%20for%20multi-contingency%20transient%20stability%20constrained%20optimal%20power%20flow&rft.btitle=2017%20IEEE%20Power%20&%20Energy%20Society%20General%20Meeting&rft.au=Yude%20Yang&rft.date=2017-07&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=1944-9933&rft_id=info:doi/10.1109/PESGM.2017.8274625&rft.eisbn=1538622122&rft.eisbn_list=9781538622124&rft_dat=%3Cieee_CHZPO%3E8274625%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-ecbdf608d4ba5197a1237291d70ae1ecd14e16f120294038c25566e950f4168d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8274625&rfr_iscdi=true