Loading…
Simulated Annealing for Independent Component Analysis Over Galois Fields
Independent Component Analysis over finite fields is an unsupervised signal processing problem that poses a challenging combinatorial optimization task. In this context, a solution based on Simulated Annealing, with an entropy-based objective function, is proposed. The empirical results demonstrate...
Saved in:
Published in: | IEEE signal processing letters 2018-04, Vol.25 (4), p.516-520 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c263t-323feb4dfca6016953f0352cfe8f361e43afd7e824e7e41fb54b06ce004eba873 |
---|---|
cites | cdi_FETCH-LOGICAL-c263t-323feb4dfca6016953f0352cfe8f361e43afd7e824e7e41fb54b06ce004eba873 |
container_end_page | 520 |
container_issue | 4 |
container_start_page | 516 |
container_title | IEEE signal processing letters |
container_volume | 25 |
creator | Silva, Daniel G. Attux, Romis |
description | Independent Component Analysis over finite fields is an unsupervised signal processing problem that poses a challenging combinatorial optimization task. In this context, a solution based on Simulated Annealing, with an entropy-based objective function, is proposed. The empirical results demonstrate the effectiveness of the method, with a performance competitive or superior to that of the reference techniques, at an inferior asymptotic computational cost. |
doi_str_mv | 10.1109/LSP.2018.2803619 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8286927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8286927</ieee_id><sourcerecordid>10_1109_LSP_2018_2803619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-323feb4dfca6016953f0352cfe8f361e43afd7e824e7e41fb54b06ce004eba873</originalsourceid><addsrcrecordid>eNo9kE1rg0AQhpfSQtO090Iv_gHt7Ie6HkWaRBBSSHuWVWeLZV3FtYX8-64k9DLzDMw7DA8hzxQiSiF7rU7vEQMqIyaBJzS7IRsaxzJkfrj1DCmEWQbynjw49w0Aksp4Q8pTP_wYtWAX5NaiMr39CvQ4B6XtcEJf7BIU4zCNdqXcKnN2vQuOvzgHe2VGz7seTeceyZ1WxuHTtW_J5-7toziE1XFfFnkVtizhS8gZ19iITrcqAZpkMdfAY9ZqlNq_ioIr3aUomcAUBdVNLBpIWgQQ2CiZ8i2By912Hp2bUdfT3A9qPtcU6lVF7VXUq4r6qsJHXi6RHhH_1yWTScZS_gek_lse</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simulated Annealing for Independent Component Analysis Over Galois Fields</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Silva, Daniel G. ; Attux, Romis</creator><creatorcontrib>Silva, Daniel G. ; Attux, Romis</creatorcontrib><description>Independent Component Analysis over finite fields is an unsupervised signal processing problem that poses a challenging combinatorial optimization task. In this context, a solution based on Simulated Annealing, with an entropy-based objective function, is proposed. The empirical results demonstrate the effectiveness of the method, with a performance competitive or superior to that of the reference techniques, at an inferior asymptotic computational cost.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2018.2803619</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Combinatorial optimization ; Correlation ; Cost function ; Entropy ; finite fields ; Independent Component Analysis (ICA) ; Signal processing algorithms ; Simulated annealing</subject><ispartof>IEEE signal processing letters, 2018-04, Vol.25 (4), p.516-520</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-323feb4dfca6016953f0352cfe8f361e43afd7e824e7e41fb54b06ce004eba873</citedby><cites>FETCH-LOGICAL-c263t-323feb4dfca6016953f0352cfe8f361e43afd7e824e7e41fb54b06ce004eba873</cites><orcidid>0000-0003-2858-1110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8286927$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Silva, Daniel G.</creatorcontrib><creatorcontrib>Attux, Romis</creatorcontrib><title>Simulated Annealing for Independent Component Analysis Over Galois Fields</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Independent Component Analysis over finite fields is an unsupervised signal processing problem that poses a challenging combinatorial optimization task. In this context, a solution based on Simulated Annealing, with an entropy-based objective function, is proposed. The empirical results demonstrate the effectiveness of the method, with a performance competitive or superior to that of the reference techniques, at an inferior asymptotic computational cost.</description><subject>Algorithm design and analysis</subject><subject>Combinatorial optimization</subject><subject>Correlation</subject><subject>Cost function</subject><subject>Entropy</subject><subject>finite fields</subject><subject>Independent Component Analysis (ICA)</subject><subject>Signal processing algorithms</subject><subject>Simulated annealing</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1rg0AQhpfSQtO090Iv_gHt7Ie6HkWaRBBSSHuWVWeLZV3FtYX8-64k9DLzDMw7DA8hzxQiSiF7rU7vEQMqIyaBJzS7IRsaxzJkfrj1DCmEWQbynjw49w0Aksp4Q8pTP_wYtWAX5NaiMr39CvQ4B6XtcEJf7BIU4zCNdqXcKnN2vQuOvzgHe2VGz7seTeceyZ1WxuHTtW_J5-7toziE1XFfFnkVtizhS8gZ19iITrcqAZpkMdfAY9ZqlNq_ioIr3aUomcAUBdVNLBpIWgQQ2CiZ8i2By912Hp2bUdfT3A9qPtcU6lVF7VXUq4r6qsJHXi6RHhH_1yWTScZS_gek_lse</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Silva, Daniel G.</creator><creator>Attux, Romis</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2858-1110</orcidid></search><sort><creationdate>201804</creationdate><title>Simulated Annealing for Independent Component Analysis Over Galois Fields</title><author>Silva, Daniel G. ; Attux, Romis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-323feb4dfca6016953f0352cfe8f361e43afd7e824e7e41fb54b06ce004eba873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithm design and analysis</topic><topic>Combinatorial optimization</topic><topic>Correlation</topic><topic>Cost function</topic><topic>Entropy</topic><topic>finite fields</topic><topic>Independent Component Analysis (ICA)</topic><topic>Signal processing algorithms</topic><topic>Simulated annealing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Daniel G.</creatorcontrib><creatorcontrib>Attux, Romis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Daniel G.</au><au>Attux, Romis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulated Annealing for Independent Component Analysis Over Galois Fields</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2018-04</date><risdate>2018</risdate><volume>25</volume><issue>4</issue><spage>516</spage><epage>520</epage><pages>516-520</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Independent Component Analysis over finite fields is an unsupervised signal processing problem that poses a challenging combinatorial optimization task. In this context, a solution based on Simulated Annealing, with an entropy-based objective function, is proposed. The empirical results demonstrate the effectiveness of the method, with a performance competitive or superior to that of the reference techniques, at an inferior asymptotic computational cost.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2018.2803619</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2858-1110</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2018-04, Vol.25 (4), p.516-520 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_ieee_primary_8286927 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithm design and analysis Combinatorial optimization Correlation Cost function Entropy finite fields Independent Component Analysis (ICA) Signal processing algorithms Simulated annealing |
title | Simulated Annealing for Independent Component Analysis Over Galois Fields |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A17%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulated%20Annealing%20for%20Independent%20Component%20Analysis%20Over%20Galois%20Fields&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Silva,%20Daniel%20G.&rft.date=2018-04&rft.volume=25&rft.issue=4&rft.spage=516&rft.epage=520&rft.pages=516-520&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2018.2803619&rft_dat=%3Ccrossref_ieee_%3E10_1109_LSP_2018_2803619%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-323feb4dfca6016953f0352cfe8f361e43afd7e824e7e41fb54b06ce004eba873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8286927&rfr_iscdi=true |