Loading…
Learning a cross-modal hashing network for multimedia search
In this paper, we propose a cross-modal hashing network (CMHN) method to learn compact binary codes for cross-modality multimedia search. Unlike most existing cross-modal hashing methods which learn a single pair of projections to map each example into a binary vector, we design a deep neural networ...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3704 |
container_issue | |
container_start_page | 3700 |
container_title | |
container_volume | |
creator | Liong, Venice Erin Lu, Jiwen Tan, Yap-Peng |
description | In this paper, we propose a cross-modal hashing network (CMHN) method to learn compact binary codes for cross-modality multimedia search. Unlike most existing cross-modal hashing methods which learn a single pair of projections to map each example into a binary vector, we design a deep neural network to learn multiple pairs of hierarchical non-linear transformations, under which the nonlinear characteristics of samples can be well exploited and the modality gap is well reduced. Our model is trained under an iterative optimization procedure which learns a (1) unified binary code discretely and discriminatively through a classification-based hinge-loss criterion, and (2) cross-modal hashing network, one deep network for each modality, through minimizing the quantization loss between real-valued neural code and binary code, and maximizing the variance of the learned neural codes. Experimental results on two benchmark datasets show the efficacy of the proposed approach. |
doi_str_mv | 10.1109/ICIP.2017.8296973 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8296973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8296973</ieee_id><sourcerecordid>8296973</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-f4d8e8d8c2b3aa963954862e9fe893c8af39c5687d37ec13dccbfca7db2bb1c3</originalsourceid><addsrcrecordid>eNotj8tKw0AYhUehYG37AOJmXiBxLknm_8GNBK2BgC66L5O5mNFcZCYivr0Vuzpw-M4Hh5AbznLOGd41dfOaC8ZVDgIrVPKC7FABLxkywVUJl2QtJPAMygKvyHVK74ydeMnX5L51Ok5heqOamjinlI2z1QPtder_2skt33P8oH6OdPwaljA6GzRNp5Xpt2Tl9ZDc7pwbcnh6PNTPWfuyb-qHNguCw5L5woIDC0Z0UmusJJYFVMKhd4DSgPYSTVmBslI5w6U1pvNGK9uJruNGbsjtvzY4546fMYw6_hzPX-UvjgNJMA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning a cross-modal hashing network for multimedia search</title><source>IEEE Xplore All Conference Series</source><creator>Liong, Venice Erin ; Lu, Jiwen ; Tan, Yap-Peng</creator><creatorcontrib>Liong, Venice Erin ; Lu, Jiwen ; Tan, Yap-Peng</creatorcontrib><description>In this paper, we propose a cross-modal hashing network (CMHN) method to learn compact binary codes for cross-modality multimedia search. Unlike most existing cross-modal hashing methods which learn a single pair of projections to map each example into a binary vector, we design a deep neural network to learn multiple pairs of hierarchical non-linear transformations, under which the nonlinear characteristics of samples can be well exploited and the modality gap is well reduced. Our model is trained under an iterative optimization procedure which learns a (1) unified binary code discretely and discriminatively through a classification-based hinge-loss criterion, and (2) cross-modal hashing network, one deep network for each modality, through minimizing the quantization loss between real-valued neural code and binary code, and maximizing the variance of the learned neural codes. Experimental results on two benchmark datasets show the efficacy of the proposed approach.</description><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781509021758</identifier><identifier>EISBN: 1509021752</identifier><identifier>DOI: 10.1109/ICIP.2017.8296973</identifier><language>eng</language><publisher>IEEE</publisher><subject>Benchmark testing ; binary code learning ; Binary codes ; cross-modal retrieval ; hashing ; Multimedia communication ; Optimization ; Quantization (signal) ; Semantics ; Training</subject><ispartof>2017 IEEE International Conference on Image Processing (ICIP), 2017, p.3700-3704</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8296973$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8296973$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liong, Venice Erin</creatorcontrib><creatorcontrib>Lu, Jiwen</creatorcontrib><creatorcontrib>Tan, Yap-Peng</creatorcontrib><title>Learning a cross-modal hashing network for multimedia search</title><title>2017 IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>In this paper, we propose a cross-modal hashing network (CMHN) method to learn compact binary codes for cross-modality multimedia search. Unlike most existing cross-modal hashing methods which learn a single pair of projections to map each example into a binary vector, we design a deep neural network to learn multiple pairs of hierarchical non-linear transformations, under which the nonlinear characteristics of samples can be well exploited and the modality gap is well reduced. Our model is trained under an iterative optimization procedure which learns a (1) unified binary code discretely and discriminatively through a classification-based hinge-loss criterion, and (2) cross-modal hashing network, one deep network for each modality, through minimizing the quantization loss between real-valued neural code and binary code, and maximizing the variance of the learned neural codes. Experimental results on two benchmark datasets show the efficacy of the proposed approach.</description><subject>Benchmark testing</subject><subject>binary code learning</subject><subject>Binary codes</subject><subject>cross-modal retrieval</subject><subject>hashing</subject><subject>Multimedia communication</subject><subject>Optimization</subject><subject>Quantization (signal)</subject><subject>Semantics</subject><subject>Training</subject><issn>2381-8549</issn><isbn>9781509021758</isbn><isbn>1509021752</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKw0AYhUehYG37AOJmXiBxLknm_8GNBK2BgC66L5O5mNFcZCYivr0Vuzpw-M4Hh5AbznLOGd41dfOaC8ZVDgIrVPKC7FABLxkywVUJl2QtJPAMygKvyHVK74ydeMnX5L51Ok5heqOamjinlI2z1QPtder_2skt33P8oH6OdPwaljA6GzRNp5Xpt2Tl9ZDc7pwbcnh6PNTPWfuyb-qHNguCw5L5woIDC0Z0UmusJJYFVMKhd4DSgPYSTVmBslI5w6U1pvNGK9uJruNGbsjtvzY4546fMYw6_hzPX-UvjgNJMA</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Liong, Venice Erin</creator><creator>Lu, Jiwen</creator><creator>Tan, Yap-Peng</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201709</creationdate><title>Learning a cross-modal hashing network for multimedia search</title><author>Liong, Venice Erin ; Lu, Jiwen ; Tan, Yap-Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-f4d8e8d8c2b3aa963954862e9fe893c8af39c5687d37ec13dccbfca7db2bb1c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Benchmark testing</topic><topic>binary code learning</topic><topic>Binary codes</topic><topic>cross-modal retrieval</topic><topic>hashing</topic><topic>Multimedia communication</topic><topic>Optimization</topic><topic>Quantization (signal)</topic><topic>Semantics</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Liong, Venice Erin</creatorcontrib><creatorcontrib>Lu, Jiwen</creatorcontrib><creatorcontrib>Tan, Yap-Peng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liong, Venice Erin</au><au>Lu, Jiwen</au><au>Tan, Yap-Peng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning a cross-modal hashing network for multimedia search</atitle><btitle>2017 IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2017-09</date><risdate>2017</risdate><spage>3700</spage><epage>3704</epage><pages>3700-3704</pages><eissn>2381-8549</eissn><eisbn>9781509021758</eisbn><eisbn>1509021752</eisbn><abstract>In this paper, we propose a cross-modal hashing network (CMHN) method to learn compact binary codes for cross-modality multimedia search. Unlike most existing cross-modal hashing methods which learn a single pair of projections to map each example into a binary vector, we design a deep neural network to learn multiple pairs of hierarchical non-linear transformations, under which the nonlinear characteristics of samples can be well exploited and the modality gap is well reduced. Our model is trained under an iterative optimization procedure which learns a (1) unified binary code discretely and discriminatively through a classification-based hinge-loss criterion, and (2) cross-modal hashing network, one deep network for each modality, through minimizing the quantization loss between real-valued neural code and binary code, and maximizing the variance of the learned neural codes. Experimental results on two benchmark datasets show the efficacy of the proposed approach.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2017.8296973</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2381-8549 |
ispartof | 2017 IEEE International Conference on Image Processing (ICIP), 2017, p.3700-3704 |
issn | 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_8296973 |
source | IEEE Xplore All Conference Series |
subjects | Benchmark testing binary code learning Binary codes cross-modal retrieval hashing Multimedia communication Optimization Quantization (signal) Semantics Training |
title | Learning a cross-modal hashing network for multimedia search |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A15%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20a%20cross-modal%20hashing%20network%20for%20multimedia%20search&rft.btitle=2017%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Liong,%20Venice%20Erin&rft.date=2017-09&rft.spage=3700&rft.epage=3704&rft.pages=3700-3704&rft.eissn=2381-8549&rft_id=info:doi/10.1109/ICIP.2017.8296973&rft.eisbn=9781509021758&rft.eisbn_list=1509021752&rft_dat=%3Cieee_CHZPO%3E8296973%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i218t-f4d8e8d8c2b3aa963954862e9fe893c8af39c5687d37ec13dccbfca7db2bb1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8296973&rfr_iscdi=true |