Loading…
Development of Large-Area CdTe/n+-Si Epitaxial Layer-Based Heterojunction Diode-Type Gamma-Ray Detector Arrays
Growth of large area single crystal CdTe layers was studied on 25 \times 25 mm 2 (211) Si substrates using metalorganic vapor phase epitaxy. High crystalline quality thick crystals with very good material uniformity were obtained. A 2-D monolithic detector array comprising ( 20 \times 20 ) pixels...
Saved in:
Published in: | IEEE transactions on nuclear science 2018-04, Vol.65 (4), p.1066-1069 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c335t-199b9cac83fa1bc6becf21ddca50daddc32023c87e8a9782d20dc178805a96f93 |
---|---|
cites | cdi_FETCH-LOGICAL-c335t-199b9cac83fa1bc6becf21ddca50daddc32023c87e8a9782d20dc178805a96f93 |
container_end_page | 1069 |
container_issue | 4 |
container_start_page | 1066 |
container_title | IEEE transactions on nuclear science |
container_volume | 65 |
creator | Niraula, M. Yasuda, K. Kojima, M. Kitagawa, S. Tsubota, S. Yamaguchi, T. Ozawa, J. Agata, Y. |
description | Growth of large area single crystal CdTe layers was studied on 25 \times 25 mm 2 (211) Si substrates using metalorganic vapor phase epitaxy. High crystalline quality thick crystals with very good material uniformity were obtained. A 2-D monolithic detector array comprising ( 20 \times 20 ) pixels was developed and evaluated. Each pixel is 1.12 \times 1.12 mm 2 size in a 1.17-mm pitch and consists of a p-CdTe/n-CdTe/n + -Si heterojunction diode structure, which is isolated from the surrounding pixels by making deep vertical cuts. The detector array exhibited highly uniform and low dark current, typically less than 0.5- \mu \text{A} /cm 2 per pixel at an applied reverse bias of 50 V. The spectroscopic performance was separately confirmed by dicing out a small portion from the array which clearly resolved energy peaks from 241 Am gamma isotopes at room temperature. On the other hand, a significant improvement in the detection property was observed by cooling it to −30 °C. |
doi_str_mv | 10.1109/TNS.2018.2812154 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8306910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8306910</ieee_id><sourcerecordid>2025117208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-199b9cac83fa1bc6becf21ddca50daddc32023c87e8a9782d20dc178805a96f93</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wUvAo6RNsk03Oda2tkJRsOs5TLOzsqXdrNmtuP_elBZPH8O8bwYeIfeCD4TgZpi9rQeSCz2QWkihRhekJ5TSTKhUX5IejytmRsZck5um2cZxpLjqkWqGP7jz9R6rlvqCriB8IZsEBDrNMxxWT2xd0nldtvBbwi7uOwzsGRrM6RJbDH57qFxb-orOSp8jy7oa6QL2e2Af0NFZZFzrA52EAF1zS64K2DV4d84--XyZZ9MlW70vXqeTFXNJolomjNkYB04nBYiNG2_QFVLkuQPFc4iZSC4Tp1PUYFItc8lzJ1KtuQIzLkzSJ4-nu3Xw3wdsWrv1h1DFlzY2lRCp5DpS_ES54JsmYGHrUO4hdFZwe7Rqo1V7tGrPVmPl4VQpEfEf1wkfG8GTP5GMc2M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025117208</pqid></control><display><type>article</type><title>Development of Large-Area CdTe/n+-Si Epitaxial Layer-Based Heterojunction Diode-Type Gamma-Ray Detector Arrays</title><source>IEEE Xplore (Online service)</source><creator>Niraula, M. ; Yasuda, K. ; Kojima, M. ; Kitagawa, S. ; Tsubota, S. ; Yamaguchi, T. ; Ozawa, J. ; Agata, Y.</creator><creatorcontrib>Niraula, M. ; Yasuda, K. ; Kojima, M. ; Kitagawa, S. ; Tsubota, S. ; Yamaguchi, T. ; Ozawa, J. ; Agata, Y.</creatorcontrib><description><![CDATA[Growth of large area single crystal CdTe layers was studied on <inline-formula> <tex-math notation="LaTeX">25 \times 25 </tex-math></inline-formula> mm 2 (211) Si substrates using metalorganic vapor phase epitaxy. High crystalline quality thick crystals with very good material uniformity were obtained. A 2-D monolithic detector array comprising (<inline-formula> <tex-math notation="LaTeX">20 \times 20 </tex-math></inline-formula>) pixels was developed and evaluated. Each pixel is <inline-formula> <tex-math notation="LaTeX">1.12 \times 1.12 </tex-math></inline-formula> mm 2 size in a 1.17-mm pitch and consists of a p-CdTe/n-CdTe/n + -Si heterojunction diode structure, which is isolated from the surrounding pixels by making deep vertical cuts. The detector array exhibited highly uniform and low dark current, typically less than 0.5-<inline-formula> <tex-math notation="LaTeX">\mu \text{A} </tex-math></inline-formula>/cm 2 per pixel at an applied reverse bias of 50 V. The spectroscopic performance was separately confirmed by dicing out a small portion from the array which clearly resolved energy peaks from 241 Am gamma isotopes at room temperature. On the other hand, a significant improvement in the detection property was observed by cooling it to −30 °C.]]></description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2018.2812154</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arrays ; Cadmium compounds ; CdTe ; Crystals ; Dark current ; Detectors ; Epitaxial growth ; gamma detectors ; Gamma ray detectors ; Heterojunctions ; II-VI semiconductor materials ; Isotopes ; large-area crystal ; Metalorganic chemical vapor deposition ; Pixels ; response uniformity ; Sensors ; Silicon ; Silicon substrates ; Single crystals ; Substrates</subject><ispartof>IEEE transactions on nuclear science, 2018-04, Vol.65 (4), p.1066-1069</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-199b9cac83fa1bc6becf21ddca50daddc32023c87e8a9782d20dc178805a96f93</citedby><cites>FETCH-LOGICAL-c335t-199b9cac83fa1bc6becf21ddca50daddc32023c87e8a9782d20dc178805a96f93</cites><orcidid>0000-0002-9612-5160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8306910$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Niraula, M.</creatorcontrib><creatorcontrib>Yasuda, K.</creatorcontrib><creatorcontrib>Kojima, M.</creatorcontrib><creatorcontrib>Kitagawa, S.</creatorcontrib><creatorcontrib>Tsubota, S.</creatorcontrib><creatorcontrib>Yamaguchi, T.</creatorcontrib><creatorcontrib>Ozawa, J.</creatorcontrib><creatorcontrib>Agata, Y.</creatorcontrib><title>Development of Large-Area CdTe/n+-Si Epitaxial Layer-Based Heterojunction Diode-Type Gamma-Ray Detector Arrays</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description><![CDATA[Growth of large area single crystal CdTe layers was studied on <inline-formula> <tex-math notation="LaTeX">25 \times 25 </tex-math></inline-formula> mm 2 (211) Si substrates using metalorganic vapor phase epitaxy. High crystalline quality thick crystals with very good material uniformity were obtained. A 2-D monolithic detector array comprising (<inline-formula> <tex-math notation="LaTeX">20 \times 20 </tex-math></inline-formula>) pixels was developed and evaluated. Each pixel is <inline-formula> <tex-math notation="LaTeX">1.12 \times 1.12 </tex-math></inline-formula> mm 2 size in a 1.17-mm pitch and consists of a p-CdTe/n-CdTe/n + -Si heterojunction diode structure, which is isolated from the surrounding pixels by making deep vertical cuts. The detector array exhibited highly uniform and low dark current, typically less than 0.5-<inline-formula> <tex-math notation="LaTeX">\mu \text{A} </tex-math></inline-formula>/cm 2 per pixel at an applied reverse bias of 50 V. The spectroscopic performance was separately confirmed by dicing out a small portion from the array which clearly resolved energy peaks from 241 Am gamma isotopes at room temperature. On the other hand, a significant improvement in the detection property was observed by cooling it to −30 °C.]]></description><subject>Arrays</subject><subject>Cadmium compounds</subject><subject>CdTe</subject><subject>Crystals</subject><subject>Dark current</subject><subject>Detectors</subject><subject>Epitaxial growth</subject><subject>gamma detectors</subject><subject>Gamma ray detectors</subject><subject>Heterojunctions</subject><subject>II-VI semiconductor materials</subject><subject>Isotopes</subject><subject>large-area crystal</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Pixels</subject><subject>response uniformity</subject><subject>Sensors</subject><subject>Silicon</subject><subject>Silicon substrates</subject><subject>Single crystals</subject><subject>Substrates</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEQRoMoWKt3wUvAo6RNsk03Oda2tkJRsOs5TLOzsqXdrNmtuP_elBZPH8O8bwYeIfeCD4TgZpi9rQeSCz2QWkihRhekJ5TSTKhUX5IejytmRsZck5um2cZxpLjqkWqGP7jz9R6rlvqCriB8IZsEBDrNMxxWT2xd0nldtvBbwi7uOwzsGRrM6RJbDH57qFxb-orOSp8jy7oa6QL2e2Af0NFZZFzrA52EAF1zS64K2DV4d84--XyZZ9MlW70vXqeTFXNJolomjNkYB04nBYiNG2_QFVLkuQPFc4iZSC4Tp1PUYFItc8lzJ1KtuQIzLkzSJ4-nu3Xw3wdsWrv1h1DFlzY2lRCp5DpS_ES54JsmYGHrUO4hdFZwe7Rqo1V7tGrPVmPl4VQpEfEf1wkfG8GTP5GMc2M</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Niraula, M.</creator><creator>Yasuda, K.</creator><creator>Kojima, M.</creator><creator>Kitagawa, S.</creator><creator>Tsubota, S.</creator><creator>Yamaguchi, T.</creator><creator>Ozawa, J.</creator><creator>Agata, Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-9612-5160</orcidid></search><sort><creationdate>20180401</creationdate><title>Development of Large-Area CdTe/n+-Si Epitaxial Layer-Based Heterojunction Diode-Type Gamma-Ray Detector Arrays</title><author>Niraula, M. ; Yasuda, K. ; Kojima, M. ; Kitagawa, S. ; Tsubota, S. ; Yamaguchi, T. ; Ozawa, J. ; Agata, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-199b9cac83fa1bc6becf21ddca50daddc32023c87e8a9782d20dc178805a96f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Arrays</topic><topic>Cadmium compounds</topic><topic>CdTe</topic><topic>Crystals</topic><topic>Dark current</topic><topic>Detectors</topic><topic>Epitaxial growth</topic><topic>gamma detectors</topic><topic>Gamma ray detectors</topic><topic>Heterojunctions</topic><topic>II-VI semiconductor materials</topic><topic>Isotopes</topic><topic>large-area crystal</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Pixels</topic><topic>response uniformity</topic><topic>Sensors</topic><topic>Silicon</topic><topic>Silicon substrates</topic><topic>Single crystals</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niraula, M.</creatorcontrib><creatorcontrib>Yasuda, K.</creatorcontrib><creatorcontrib>Kojima, M.</creatorcontrib><creatorcontrib>Kitagawa, S.</creatorcontrib><creatorcontrib>Tsubota, S.</creatorcontrib><creatorcontrib>Yamaguchi, T.</creatorcontrib><creatorcontrib>Ozawa, J.</creatorcontrib><creatorcontrib>Agata, Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niraula, M.</au><au>Yasuda, K.</au><au>Kojima, M.</au><au>Kitagawa, S.</au><au>Tsubota, S.</au><au>Yamaguchi, T.</au><au>Ozawa, J.</au><au>Agata, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Large-Area CdTe/n+-Si Epitaxial Layer-Based Heterojunction Diode-Type Gamma-Ray Detector Arrays</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>65</volume><issue>4</issue><spage>1066</spage><epage>1069</epage><pages>1066-1069</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract><![CDATA[Growth of large area single crystal CdTe layers was studied on <inline-formula> <tex-math notation="LaTeX">25 \times 25 </tex-math></inline-formula> mm 2 (211) Si substrates using metalorganic vapor phase epitaxy. High crystalline quality thick crystals with very good material uniformity were obtained. A 2-D monolithic detector array comprising (<inline-formula> <tex-math notation="LaTeX">20 \times 20 </tex-math></inline-formula>) pixels was developed and evaluated. Each pixel is <inline-formula> <tex-math notation="LaTeX">1.12 \times 1.12 </tex-math></inline-formula> mm 2 size in a 1.17-mm pitch and consists of a p-CdTe/n-CdTe/n + -Si heterojunction diode structure, which is isolated from the surrounding pixels by making deep vertical cuts. The detector array exhibited highly uniform and low dark current, typically less than 0.5-<inline-formula> <tex-math notation="LaTeX">\mu \text{A} </tex-math></inline-formula>/cm 2 per pixel at an applied reverse bias of 50 V. The spectroscopic performance was separately confirmed by dicing out a small portion from the array which clearly resolved energy peaks from 241 Am gamma isotopes at room temperature. On the other hand, a significant improvement in the detection property was observed by cooling it to −30 °C.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2018.2812154</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-9612-5160</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2018-04, Vol.65 (4), p.1066-1069 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_ieee_primary_8306910 |
source | IEEE Xplore (Online service) |
subjects | Arrays Cadmium compounds CdTe Crystals Dark current Detectors Epitaxial growth gamma detectors Gamma ray detectors Heterojunctions II-VI semiconductor materials Isotopes large-area crystal Metalorganic chemical vapor deposition Pixels response uniformity Sensors Silicon Silicon substrates Single crystals Substrates |
title | Development of Large-Area CdTe/n+-Si Epitaxial Layer-Based Heterojunction Diode-Type Gamma-Ray Detector Arrays |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A54%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Large-Area%20CdTe/n+-Si%20Epitaxial%20Layer-Based%20Heterojunction%20Diode-Type%20Gamma-Ray%20Detector%20Arrays&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Niraula,%20M.&rft.date=2018-04-01&rft.volume=65&rft.issue=4&rft.spage=1066&rft.epage=1069&rft.pages=1066-1069&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2018.2812154&rft_dat=%3Cproquest_ieee_%3E2025117208%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-199b9cac83fa1bc6becf21ddca50daddc32023c87e8a9782d20dc178805a96f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2025117208&rft_id=info:pmid/&rft_ieee_id=8306910&rfr_iscdi=true |