Loading…

Development of Large-Area CdTe/n+-Si Epitaxial Layer-Based Heterojunction Diode-Type Gamma-Ray Detector Arrays

Growth of large area single crystal CdTe layers was studied on 25 \times 25 mm 2 (211) Si substrates using metalorganic vapor phase epitaxy. High crystalline quality thick crystals with very good material uniformity were obtained. A 2-D monolithic detector array comprising ( 20 \times 20 ) pixels...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nuclear science 2018-04, Vol.65 (4), p.1066-1069
Main Authors: Niraula, M., Yasuda, K., Kojima, M., Kitagawa, S., Tsubota, S., Yamaguchi, T., Ozawa, J., Agata, Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c335t-199b9cac83fa1bc6becf21ddca50daddc32023c87e8a9782d20dc178805a96f93
cites cdi_FETCH-LOGICAL-c335t-199b9cac83fa1bc6becf21ddca50daddc32023c87e8a9782d20dc178805a96f93
container_end_page 1069
container_issue 4
container_start_page 1066
container_title IEEE transactions on nuclear science
container_volume 65
creator Niraula, M.
Yasuda, K.
Kojima, M.
Kitagawa, S.
Tsubota, S.
Yamaguchi, T.
Ozawa, J.
Agata, Y.
description Growth of large area single crystal CdTe layers was studied on 25 \times 25 mm 2 (211) Si substrates using metalorganic vapor phase epitaxy. High crystalline quality thick crystals with very good material uniformity were obtained. A 2-D monolithic detector array comprising ( 20 \times 20 ) pixels was developed and evaluated. Each pixel is 1.12 \times 1.12 mm 2 size in a 1.17-mm pitch and consists of a p-CdTe/n-CdTe/n + -Si heterojunction diode structure, which is isolated from the surrounding pixels by making deep vertical cuts. The detector array exhibited highly uniform and low dark current, typically less than 0.5- \mu \text{A} /cm 2 per pixel at an applied reverse bias of 50 V. The spectroscopic performance was separately confirmed by dicing out a small portion from the array which clearly resolved energy peaks from 241 Am gamma isotopes at room temperature. On the other hand, a significant improvement in the detection property was observed by cooling it to −30 °C.
doi_str_mv 10.1109/TNS.2018.2812154
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8306910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8306910</ieee_id><sourcerecordid>2025117208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-199b9cac83fa1bc6becf21ddca50daddc32023c87e8a9782d20dc178805a96f93</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wUvAo6RNsk03Oda2tkJRsOs5TLOzsqXdrNmtuP_elBZPH8O8bwYeIfeCD4TgZpi9rQeSCz2QWkihRhekJ5TSTKhUX5IejytmRsZck5um2cZxpLjqkWqGP7jz9R6rlvqCriB8IZsEBDrNMxxWT2xd0nldtvBbwi7uOwzsGRrM6RJbDH57qFxb-orOSp8jy7oa6QL2e2Af0NFZZFzrA52EAF1zS64K2DV4d84--XyZZ9MlW70vXqeTFXNJolomjNkYB04nBYiNG2_QFVLkuQPFc4iZSC4Tp1PUYFItc8lzJ1KtuQIzLkzSJ4-nu3Xw3wdsWrv1h1DFlzY2lRCp5DpS_ES54JsmYGHrUO4hdFZwe7Rqo1V7tGrPVmPl4VQpEfEf1wkfG8GTP5GMc2M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025117208</pqid></control><display><type>article</type><title>Development of Large-Area CdTe/n+-Si Epitaxial Layer-Based Heterojunction Diode-Type Gamma-Ray Detector Arrays</title><source>IEEE Xplore (Online service)</source><creator>Niraula, M. ; Yasuda, K. ; Kojima, M. ; Kitagawa, S. ; Tsubota, S. ; Yamaguchi, T. ; Ozawa, J. ; Agata, Y.</creator><creatorcontrib>Niraula, M. ; Yasuda, K. ; Kojima, M. ; Kitagawa, S. ; Tsubota, S. ; Yamaguchi, T. ; Ozawa, J. ; Agata, Y.</creatorcontrib><description><![CDATA[Growth of large area single crystal CdTe layers was studied on <inline-formula> <tex-math notation="LaTeX">25 \times 25 </tex-math></inline-formula> mm 2 (211) Si substrates using metalorganic vapor phase epitaxy. High crystalline quality thick crystals with very good material uniformity were obtained. A 2-D monolithic detector array comprising (<inline-formula> <tex-math notation="LaTeX">20 \times 20 </tex-math></inline-formula>) pixels was developed and evaluated. Each pixel is <inline-formula> <tex-math notation="LaTeX">1.12 \times 1.12 </tex-math></inline-formula> mm 2 size in a 1.17-mm pitch and consists of a p-CdTe/n-CdTe/n + -Si heterojunction diode structure, which is isolated from the surrounding pixels by making deep vertical cuts. The detector array exhibited highly uniform and low dark current, typically less than 0.5-<inline-formula> <tex-math notation="LaTeX">\mu \text{A} </tex-math></inline-formula>/cm 2 per pixel at an applied reverse bias of 50 V. The spectroscopic performance was separately confirmed by dicing out a small portion from the array which clearly resolved energy peaks from 241 Am gamma isotopes at room temperature. On the other hand, a significant improvement in the detection property was observed by cooling it to −30 °C.]]></description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2018.2812154</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arrays ; Cadmium compounds ; CdTe ; Crystals ; Dark current ; Detectors ; Epitaxial growth ; gamma detectors ; Gamma ray detectors ; Heterojunctions ; II-VI semiconductor materials ; Isotopes ; large-area crystal ; Metalorganic chemical vapor deposition ; Pixels ; response uniformity ; Sensors ; Silicon ; Silicon substrates ; Single crystals ; Substrates</subject><ispartof>IEEE transactions on nuclear science, 2018-04, Vol.65 (4), p.1066-1069</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-199b9cac83fa1bc6becf21ddca50daddc32023c87e8a9782d20dc178805a96f93</citedby><cites>FETCH-LOGICAL-c335t-199b9cac83fa1bc6becf21ddca50daddc32023c87e8a9782d20dc178805a96f93</cites><orcidid>0000-0002-9612-5160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8306910$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Niraula, M.</creatorcontrib><creatorcontrib>Yasuda, K.</creatorcontrib><creatorcontrib>Kojima, M.</creatorcontrib><creatorcontrib>Kitagawa, S.</creatorcontrib><creatorcontrib>Tsubota, S.</creatorcontrib><creatorcontrib>Yamaguchi, T.</creatorcontrib><creatorcontrib>Ozawa, J.</creatorcontrib><creatorcontrib>Agata, Y.</creatorcontrib><title>Development of Large-Area CdTe/n+-Si Epitaxial Layer-Based Heterojunction Diode-Type Gamma-Ray Detector Arrays</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description><![CDATA[Growth of large area single crystal CdTe layers was studied on <inline-formula> <tex-math notation="LaTeX">25 \times 25 </tex-math></inline-formula> mm 2 (211) Si substrates using metalorganic vapor phase epitaxy. High crystalline quality thick crystals with very good material uniformity were obtained. A 2-D monolithic detector array comprising (<inline-formula> <tex-math notation="LaTeX">20 \times 20 </tex-math></inline-formula>) pixels was developed and evaluated. Each pixel is <inline-formula> <tex-math notation="LaTeX">1.12 \times 1.12 </tex-math></inline-formula> mm 2 size in a 1.17-mm pitch and consists of a p-CdTe/n-CdTe/n + -Si heterojunction diode structure, which is isolated from the surrounding pixels by making deep vertical cuts. The detector array exhibited highly uniform and low dark current, typically less than 0.5-<inline-formula> <tex-math notation="LaTeX">\mu \text{A} </tex-math></inline-formula>/cm 2 per pixel at an applied reverse bias of 50 V. The spectroscopic performance was separately confirmed by dicing out a small portion from the array which clearly resolved energy peaks from 241 Am gamma isotopes at room temperature. On the other hand, a significant improvement in the detection property was observed by cooling it to −30 °C.]]></description><subject>Arrays</subject><subject>Cadmium compounds</subject><subject>CdTe</subject><subject>Crystals</subject><subject>Dark current</subject><subject>Detectors</subject><subject>Epitaxial growth</subject><subject>gamma detectors</subject><subject>Gamma ray detectors</subject><subject>Heterojunctions</subject><subject>II-VI semiconductor materials</subject><subject>Isotopes</subject><subject>large-area crystal</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Pixels</subject><subject>response uniformity</subject><subject>Sensors</subject><subject>Silicon</subject><subject>Silicon substrates</subject><subject>Single crystals</subject><subject>Substrates</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEQRoMoWKt3wUvAo6RNsk03Oda2tkJRsOs5TLOzsqXdrNmtuP_elBZPH8O8bwYeIfeCD4TgZpi9rQeSCz2QWkihRhekJ5TSTKhUX5IejytmRsZck5um2cZxpLjqkWqGP7jz9R6rlvqCriB8IZsEBDrNMxxWT2xd0nldtvBbwi7uOwzsGRrM6RJbDH57qFxb-orOSp8jy7oa6QL2e2Af0NFZZFzrA52EAF1zS64K2DV4d84--XyZZ9MlW70vXqeTFXNJolomjNkYB04nBYiNG2_QFVLkuQPFc4iZSC4Tp1PUYFItc8lzJ1KtuQIzLkzSJ4-nu3Xw3wdsWrv1h1DFlzY2lRCp5DpS_ES54JsmYGHrUO4hdFZwe7Rqo1V7tGrPVmPl4VQpEfEf1wkfG8GTP5GMc2M</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Niraula, M.</creator><creator>Yasuda, K.</creator><creator>Kojima, M.</creator><creator>Kitagawa, S.</creator><creator>Tsubota, S.</creator><creator>Yamaguchi, T.</creator><creator>Ozawa, J.</creator><creator>Agata, Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-9612-5160</orcidid></search><sort><creationdate>20180401</creationdate><title>Development of Large-Area CdTe/n+-Si Epitaxial Layer-Based Heterojunction Diode-Type Gamma-Ray Detector Arrays</title><author>Niraula, M. ; Yasuda, K. ; Kojima, M. ; Kitagawa, S. ; Tsubota, S. ; Yamaguchi, T. ; Ozawa, J. ; Agata, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-199b9cac83fa1bc6becf21ddca50daddc32023c87e8a9782d20dc178805a96f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Arrays</topic><topic>Cadmium compounds</topic><topic>CdTe</topic><topic>Crystals</topic><topic>Dark current</topic><topic>Detectors</topic><topic>Epitaxial growth</topic><topic>gamma detectors</topic><topic>Gamma ray detectors</topic><topic>Heterojunctions</topic><topic>II-VI semiconductor materials</topic><topic>Isotopes</topic><topic>large-area crystal</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Pixels</topic><topic>response uniformity</topic><topic>Sensors</topic><topic>Silicon</topic><topic>Silicon substrates</topic><topic>Single crystals</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niraula, M.</creatorcontrib><creatorcontrib>Yasuda, K.</creatorcontrib><creatorcontrib>Kojima, M.</creatorcontrib><creatorcontrib>Kitagawa, S.</creatorcontrib><creatorcontrib>Tsubota, S.</creatorcontrib><creatorcontrib>Yamaguchi, T.</creatorcontrib><creatorcontrib>Ozawa, J.</creatorcontrib><creatorcontrib>Agata, Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niraula, M.</au><au>Yasuda, K.</au><au>Kojima, M.</au><au>Kitagawa, S.</au><au>Tsubota, S.</au><au>Yamaguchi, T.</au><au>Ozawa, J.</au><au>Agata, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Large-Area CdTe/n+-Si Epitaxial Layer-Based Heterojunction Diode-Type Gamma-Ray Detector Arrays</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>65</volume><issue>4</issue><spage>1066</spage><epage>1069</epage><pages>1066-1069</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract><![CDATA[Growth of large area single crystal CdTe layers was studied on <inline-formula> <tex-math notation="LaTeX">25 \times 25 </tex-math></inline-formula> mm 2 (211) Si substrates using metalorganic vapor phase epitaxy. High crystalline quality thick crystals with very good material uniformity were obtained. A 2-D monolithic detector array comprising (<inline-formula> <tex-math notation="LaTeX">20 \times 20 </tex-math></inline-formula>) pixels was developed and evaluated. Each pixel is <inline-formula> <tex-math notation="LaTeX">1.12 \times 1.12 </tex-math></inline-formula> mm 2 size in a 1.17-mm pitch and consists of a p-CdTe/n-CdTe/n + -Si heterojunction diode structure, which is isolated from the surrounding pixels by making deep vertical cuts. The detector array exhibited highly uniform and low dark current, typically less than 0.5-<inline-formula> <tex-math notation="LaTeX">\mu \text{A} </tex-math></inline-formula>/cm 2 per pixel at an applied reverse bias of 50 V. The spectroscopic performance was separately confirmed by dicing out a small portion from the array which clearly resolved energy peaks from 241 Am gamma isotopes at room temperature. On the other hand, a significant improvement in the detection property was observed by cooling it to −30 °C.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2018.2812154</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-9612-5160</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2018-04, Vol.65 (4), p.1066-1069
issn 0018-9499
1558-1578
language eng
recordid cdi_ieee_primary_8306910
source IEEE Xplore (Online service)
subjects Arrays
Cadmium compounds
CdTe
Crystals
Dark current
Detectors
Epitaxial growth
gamma detectors
Gamma ray detectors
Heterojunctions
II-VI semiconductor materials
Isotopes
large-area crystal
Metalorganic chemical vapor deposition
Pixels
response uniformity
Sensors
Silicon
Silicon substrates
Single crystals
Substrates
title Development of Large-Area CdTe/n+-Si Epitaxial Layer-Based Heterojunction Diode-Type Gamma-Ray Detector Arrays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A54%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Large-Area%20CdTe/n+-Si%20Epitaxial%20Layer-Based%20Heterojunction%20Diode-Type%20Gamma-Ray%20Detector%20Arrays&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Niraula,%20M.&rft.date=2018-04-01&rft.volume=65&rft.issue=4&rft.spage=1066&rft.epage=1069&rft.pages=1066-1069&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2018.2812154&rft_dat=%3Cproquest_ieee_%3E2025117208%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-199b9cac83fa1bc6becf21ddca50daddc32023c87e8a9782d20dc178805a96f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2025117208&rft_id=info:pmid/&rft_ieee_id=8306910&rfr_iscdi=true