Loading…

New and used bills classification for cepstrum patterns

This paper proposes a new method to classify bills into different fatigue levels. Acoustic cepstrum patterns obtained from an acoustic signal generated by a bill passing through a banking machine are used for classification. The acoustic cepstrum patterns are fed to a competitive neural network with...

Full description

Saved in:
Bibliographic Details
Main Authors: Teranishi, M., Omato, S., Kosaka, T.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3981 vol.6
container_issue
container_start_page 3978
container_title
container_volume 6
creator Teranishi, M.
Omato, S.
Kosaka, T.
description This paper proposes a new method to classify bills into different fatigue levels. Acoustic cepstrum patterns obtained from an acoustic signal generated by a bill passing through a banking machine are used for classification. The acoustic cepstrum patterns are fed to a competitive neural network with the learning vector quantization (LVQ) algorithm, and classified the bill into three fatigue levels. The experimental results show that the proposed method is useful for classification of fatigue levels of bills, and the LVQ algorithm performs a good classification.
doi_str_mv 10.1109/IJCNN.1999.830794
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_830794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>830794</ieee_id><sourcerecordid>830794</sourcerecordid><originalsourceid>FETCH-ieee_primary_8307943</originalsourceid><addsrcrecordid>eNp9zrsKwjAUgOHgBbw-gE55gdaTpml6ZlHUoZO7xDaFSFpLTkV8ewWdnf7hW37GVgJiIQA3x9O2KGKBiHEuQWM6YFOhVB5JhGTIZqBzkEolmI0-AJhHWulswmZEN4AMdIpTpgv75Kat-INsxa_Oe-KlN0SudqXp3b3l9T3w0nbUh0fDO9P3NrS0YOPaeLLLX-dsvd-dt4fIWWsvXXCNCa_L90v-xTfdpDi0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>New and used bills classification for cepstrum patterns</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Teranishi, M. ; Omato, S. ; Kosaka, T.</creator><creatorcontrib>Teranishi, M. ; Omato, S. ; Kosaka, T.</creatorcontrib><description>This paper proposes a new method to classify bills into different fatigue levels. Acoustic cepstrum patterns obtained from an acoustic signal generated by a bill passing through a banking machine are used for classification. The acoustic cepstrum patterns are fed to a competitive neural network with the learning vector quantization (LVQ) algorithm, and classified the bill into three fatigue levels. The experimental results show that the proposed method is useful for classification of fatigue levels of bills, and the LVQ algorithm performs a good classification.</description><identifier>ISSN: 1098-7576</identifier><identifier>ISBN: 0780355296</identifier><identifier>ISBN: 9780780355293</identifier><identifier>EISSN: 1558-3902</identifier><identifier>DOI: 10.1109/IJCNN.1999.830794</identifier><language>eng</language><publisher>IEEE</publisher><subject>Banking ; Cepstral analysis ; Cepstrum ; Educational institutions ; Electronic mail ; Fatigue ; Feature extraction ; Microphones ; Neural networks ; Signal generators</subject><ispartof>IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339), 1999, Vol.6, p.3978-3981 vol.6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/830794$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,4038,4039,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/830794$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Teranishi, M.</creatorcontrib><creatorcontrib>Omato, S.</creatorcontrib><creatorcontrib>Kosaka, T.</creatorcontrib><title>New and used bills classification for cepstrum patterns</title><title>IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)</title><addtitle>IJCNN</addtitle><description>This paper proposes a new method to classify bills into different fatigue levels. Acoustic cepstrum patterns obtained from an acoustic signal generated by a bill passing through a banking machine are used for classification. The acoustic cepstrum patterns are fed to a competitive neural network with the learning vector quantization (LVQ) algorithm, and classified the bill into three fatigue levels. The experimental results show that the proposed method is useful for classification of fatigue levels of bills, and the LVQ algorithm performs a good classification.</description><subject>Banking</subject><subject>Cepstral analysis</subject><subject>Cepstrum</subject><subject>Educational institutions</subject><subject>Electronic mail</subject><subject>Fatigue</subject><subject>Feature extraction</subject><subject>Microphones</subject><subject>Neural networks</subject><subject>Signal generators</subject><issn>1098-7576</issn><issn>1558-3902</issn><isbn>0780355296</isbn><isbn>9780780355293</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9zrsKwjAUgOHgBbw-gE55gdaTpml6ZlHUoZO7xDaFSFpLTkV8ewWdnf7hW37GVgJiIQA3x9O2KGKBiHEuQWM6YFOhVB5JhGTIZqBzkEolmI0-AJhHWulswmZEN4AMdIpTpgv75Kat-INsxa_Oe-KlN0SudqXp3b3l9T3w0nbUh0fDO9P3NrS0YOPaeLLLX-dsvd-dt4fIWWsvXXCNCa_L90v-xTfdpDi0</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Teranishi, M.</creator><creator>Omato, S.</creator><creator>Kosaka, T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>New and used bills classification for cepstrum patterns</title><author>Teranishi, M. ; Omato, S. ; Kosaka, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_8307943</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Banking</topic><topic>Cepstral analysis</topic><topic>Cepstrum</topic><topic>Educational institutions</topic><topic>Electronic mail</topic><topic>Fatigue</topic><topic>Feature extraction</topic><topic>Microphones</topic><topic>Neural networks</topic><topic>Signal generators</topic><toplevel>online_resources</toplevel><creatorcontrib>Teranishi, M.</creatorcontrib><creatorcontrib>Omato, S.</creatorcontrib><creatorcontrib>Kosaka, T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Teranishi, M.</au><au>Omato, S.</au><au>Kosaka, T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>New and used bills classification for cepstrum patterns</atitle><btitle>IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)</btitle><stitle>IJCNN</stitle><date>1999</date><risdate>1999</risdate><volume>6</volume><spage>3978</spage><epage>3981 vol.6</epage><pages>3978-3981 vol.6</pages><issn>1098-7576</issn><eissn>1558-3902</eissn><isbn>0780355296</isbn><isbn>9780780355293</isbn><abstract>This paper proposes a new method to classify bills into different fatigue levels. Acoustic cepstrum patterns obtained from an acoustic signal generated by a bill passing through a banking machine are used for classification. The acoustic cepstrum patterns are fed to a competitive neural network with the learning vector quantization (LVQ) algorithm, and classified the bill into three fatigue levels. The experimental results show that the proposed method is useful for classification of fatigue levels of bills, and the LVQ algorithm performs a good classification.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.1999.830794</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1098-7576
ispartof IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339), 1999, Vol.6, p.3978-3981 vol.6
issn 1098-7576
1558-3902
language eng
recordid cdi_ieee_primary_830794
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Banking
Cepstral analysis
Cepstrum
Educational institutions
Electronic mail
Fatigue
Feature extraction
Microphones
Neural networks
Signal generators
title New and used bills classification for cepstrum patterns
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=New%20and%20used%20bills%20classification%20for%20cepstrum%20patterns&rft.btitle=IJCNN'99.%20International%20Joint%20Conference%20on%20Neural%20Networks.%20Proceedings%20(Cat.%20No.99CH36339)&rft.au=Teranishi,%20M.&rft.date=1999&rft.volume=6&rft.spage=3978&rft.epage=3981%20vol.6&rft.pages=3978-3981%20vol.6&rft.issn=1098-7576&rft.eissn=1558-3902&rft.isbn=0780355296&rft.isbn_list=9780780355293&rft_id=info:doi/10.1109/IJCNN.1999.830794&rft_dat=%3Cieee_6IE%3E830794%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_8307943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=830794&rfr_iscdi=true