Loading…
Input variable selection using independent component analysis
The problem of input variable selection is well known in the task of modeling real world data. In this paper we propose a novel model-free algorithm for input variable selection using independent component analysis and higher order cross statistics. Experimental results are given which indicate that...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1159-ed40f5af7496b9ca5bf58dd518946944d15e7ec627164ab669846eca7d588db13 |
---|---|
cites | |
container_end_page | 992 vol.2 |
container_issue | |
container_start_page | 989 |
container_title | |
container_volume | 2 |
creator | Back, A.D. Trappenberg, T.P. |
description | The problem of input variable selection is well known in the task of modeling real world data. In this paper we propose a novel model-free algorithm for input variable selection using independent component analysis and higher order cross statistics. Experimental results are given which indicate that the method is capable of giving reliable performance and that it outperforms other approaches when the inputs are dependent. |
doi_str_mv | 10.1109/IJCNN.1999.831089 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_831089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>831089</ieee_id><sourcerecordid>831089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1159-ed40f5af7496b9ca5bf58dd518946944d15e7ec627164ab669846eca7d588db13</originalsourceid><addsrcrecordid>eNotT01Lw0AUXPwAS-0P0FP-QOq-Zt_uvoMHKVojpV70XDbZF1lJNyGbCv33RuowzAwMDIwQdyCXAJIeyrf1brcEIlraAqSlCzEDRJsXJFeXYkHGyokF4oqKq6mTZHODRt-IRUrfcoJCmPqZeCxjfxyzHzcEV7WcJW65HkMXs2MK8SsL0XPPk8Qxq7tD38W_5KJrTymkW3HduDbx4t_n4vPl-WP9mm_fN-X6aZvXAEg5eyUbdI1RpCuqHVYNWu8RLClNSnlANlzrlQGtXKU1WaW5dsajtb6CYi7uz7uBmff9EA5uOO3P34tf6Q5LjQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Input variable selection using independent component analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Back, A.D. ; Trappenberg, T.P.</creator><creatorcontrib>Back, A.D. ; Trappenberg, T.P.</creatorcontrib><description>The problem of input variable selection is well known in the task of modeling real world data. In this paper we propose a novel model-free algorithm for input variable selection using independent component analysis and higher order cross statistics. Experimental results are given which indicate that the method is capable of giving reliable performance and that it outperforms other approaches when the inputs are dependent.</description><identifier>ISSN: 1098-7576</identifier><identifier>ISBN: 9780780355293</identifier><identifier>ISBN: 0780355296</identifier><identifier>EISSN: 1558-3902</identifier><identifier>DOI: 10.1109/IJCNN.1999.831089</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical measurements ; Chemicals ; Context modeling ; Cost function ; Filters ; Independent component analysis ; Input variables ; Optimization methods ; Statistical analysis ; Testing</subject><ispartof>IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339), 1999, Vol.2, p.989-992 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1159-ed40f5af7496b9ca5bf58dd518946944d15e7ec627164ab669846eca7d588db13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/831089$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/831089$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Back, A.D.</creatorcontrib><creatorcontrib>Trappenberg, T.P.</creatorcontrib><title>Input variable selection using independent component analysis</title><title>IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)</title><addtitle>IJCNN</addtitle><description>The problem of input variable selection is well known in the task of modeling real world data. In this paper we propose a novel model-free algorithm for input variable selection using independent component analysis and higher order cross statistics. Experimental results are given which indicate that the method is capable of giving reliable performance and that it outperforms other approaches when the inputs are dependent.</description><subject>Biomedical measurements</subject><subject>Chemicals</subject><subject>Context modeling</subject><subject>Cost function</subject><subject>Filters</subject><subject>Independent component analysis</subject><subject>Input variables</subject><subject>Optimization methods</subject><subject>Statistical analysis</subject><subject>Testing</subject><issn>1098-7576</issn><issn>1558-3902</issn><isbn>9780780355293</isbn><isbn>0780355296</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT01Lw0AUXPwAS-0P0FP-QOq-Zt_uvoMHKVojpV70XDbZF1lJNyGbCv33RuowzAwMDIwQdyCXAJIeyrf1brcEIlraAqSlCzEDRJsXJFeXYkHGyokF4oqKq6mTZHODRt-IRUrfcoJCmPqZeCxjfxyzHzcEV7WcJW65HkMXs2MK8SsL0XPPk8Qxq7tD38W_5KJrTymkW3HduDbx4t_n4vPl-WP9mm_fN-X6aZvXAEg5eyUbdI1RpCuqHVYNWu8RLClNSnlANlzrlQGtXKU1WaW5dsajtb6CYi7uz7uBmff9EA5uOO3P34tf6Q5LjQ</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Back, A.D.</creator><creator>Trappenberg, T.P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>Input variable selection using independent component analysis</title><author>Back, A.D. ; Trappenberg, T.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1159-ed40f5af7496b9ca5bf58dd518946944d15e7ec627164ab669846eca7d588db13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Biomedical measurements</topic><topic>Chemicals</topic><topic>Context modeling</topic><topic>Cost function</topic><topic>Filters</topic><topic>Independent component analysis</topic><topic>Input variables</topic><topic>Optimization methods</topic><topic>Statistical analysis</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Back, A.D.</creatorcontrib><creatorcontrib>Trappenberg, T.P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Back, A.D.</au><au>Trappenberg, T.P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Input variable selection using independent component analysis</atitle><btitle>IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)</btitle><stitle>IJCNN</stitle><date>1999</date><risdate>1999</risdate><volume>2</volume><spage>989</spage><epage>992 vol.2</epage><pages>989-992 vol.2</pages><issn>1098-7576</issn><eissn>1558-3902</eissn><isbn>9780780355293</isbn><isbn>0780355296</isbn><abstract>The problem of input variable selection is well known in the task of modeling real world data. In this paper we propose a novel model-free algorithm for input variable selection using independent component analysis and higher order cross statistics. Experimental results are given which indicate that the method is capable of giving reliable performance and that it outperforms other approaches when the inputs are dependent.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.1999.831089</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1098-7576 |
ispartof | IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339), 1999, Vol.2, p.989-992 vol.2 |
issn | 1098-7576 1558-3902 |
language | eng |
recordid | cdi_ieee_primary_831089 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biomedical measurements Chemicals Context modeling Cost function Filters Independent component analysis Input variables Optimization methods Statistical analysis Testing |
title | Input variable selection using independent component analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Input%20variable%20selection%20using%20independent%20component%20analysis&rft.btitle=IJCNN'99.%20International%20Joint%20Conference%20on%20Neural%20Networks.%20Proceedings%20(Cat.%20No.99CH36339)&rft.au=Back,%20A.D.&rft.date=1999&rft.volume=2&rft.spage=989&rft.epage=992%20vol.2&rft.pages=989-992%20vol.2&rft.issn=1098-7576&rft.eissn=1558-3902&rft.isbn=9780780355293&rft.isbn_list=0780355296&rft_id=info:doi/10.1109/IJCNN.1999.831089&rft_dat=%3Cieee_6IE%3E831089%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1159-ed40f5af7496b9ca5bf58dd518946944d15e7ec627164ab669846eca7d588db13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=831089&rfr_iscdi=true |