Loading…

Input variable selection using independent component analysis

The problem of input variable selection is well known in the task of modeling real world data. In this paper we propose a novel model-free algorithm for input variable selection using independent component analysis and higher order cross statistics. Experimental results are given which indicate that...

Full description

Saved in:
Bibliographic Details
Main Authors: Back, A.D., Trappenberg, T.P.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1159-ed40f5af7496b9ca5bf58dd518946944d15e7ec627164ab669846eca7d588db13
cites
container_end_page 992 vol.2
container_issue
container_start_page 989
container_title
container_volume 2
creator Back, A.D.
Trappenberg, T.P.
description The problem of input variable selection is well known in the task of modeling real world data. In this paper we propose a novel model-free algorithm for input variable selection using independent component analysis and higher order cross statistics. Experimental results are given which indicate that the method is capable of giving reliable performance and that it outperforms other approaches when the inputs are dependent.
doi_str_mv 10.1109/IJCNN.1999.831089
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_831089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>831089</ieee_id><sourcerecordid>831089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1159-ed40f5af7496b9ca5bf58dd518946944d15e7ec627164ab669846eca7d588db13</originalsourceid><addsrcrecordid>eNotT01Lw0AUXPwAS-0P0FP-QOq-Zt_uvoMHKVojpV70XDbZF1lJNyGbCv33RuowzAwMDIwQdyCXAJIeyrf1brcEIlraAqSlCzEDRJsXJFeXYkHGyokF4oqKq6mTZHODRt-IRUrfcoJCmPqZeCxjfxyzHzcEV7WcJW65HkMXs2MK8SsL0XPPk8Qxq7tD38W_5KJrTymkW3HduDbx4t_n4vPl-WP9mm_fN-X6aZvXAEg5eyUbdI1RpCuqHVYNWu8RLClNSnlANlzrlQGtXKU1WaW5dsajtb6CYi7uz7uBmff9EA5uOO3P34tf6Q5LjQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Input variable selection using independent component analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Back, A.D. ; Trappenberg, T.P.</creator><creatorcontrib>Back, A.D. ; Trappenberg, T.P.</creatorcontrib><description>The problem of input variable selection is well known in the task of modeling real world data. In this paper we propose a novel model-free algorithm for input variable selection using independent component analysis and higher order cross statistics. Experimental results are given which indicate that the method is capable of giving reliable performance and that it outperforms other approaches when the inputs are dependent.</description><identifier>ISSN: 1098-7576</identifier><identifier>ISBN: 9780780355293</identifier><identifier>ISBN: 0780355296</identifier><identifier>EISSN: 1558-3902</identifier><identifier>DOI: 10.1109/IJCNN.1999.831089</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical measurements ; Chemicals ; Context modeling ; Cost function ; Filters ; Independent component analysis ; Input variables ; Optimization methods ; Statistical analysis ; Testing</subject><ispartof>IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339), 1999, Vol.2, p.989-992 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1159-ed40f5af7496b9ca5bf58dd518946944d15e7ec627164ab669846eca7d588db13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/831089$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/831089$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Back, A.D.</creatorcontrib><creatorcontrib>Trappenberg, T.P.</creatorcontrib><title>Input variable selection using independent component analysis</title><title>IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)</title><addtitle>IJCNN</addtitle><description>The problem of input variable selection is well known in the task of modeling real world data. In this paper we propose a novel model-free algorithm for input variable selection using independent component analysis and higher order cross statistics. Experimental results are given which indicate that the method is capable of giving reliable performance and that it outperforms other approaches when the inputs are dependent.</description><subject>Biomedical measurements</subject><subject>Chemicals</subject><subject>Context modeling</subject><subject>Cost function</subject><subject>Filters</subject><subject>Independent component analysis</subject><subject>Input variables</subject><subject>Optimization methods</subject><subject>Statistical analysis</subject><subject>Testing</subject><issn>1098-7576</issn><issn>1558-3902</issn><isbn>9780780355293</isbn><isbn>0780355296</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT01Lw0AUXPwAS-0P0FP-QOq-Zt_uvoMHKVojpV70XDbZF1lJNyGbCv33RuowzAwMDIwQdyCXAJIeyrf1brcEIlraAqSlCzEDRJsXJFeXYkHGyokF4oqKq6mTZHODRt-IRUrfcoJCmPqZeCxjfxyzHzcEV7WcJW65HkMXs2MK8SsL0XPPk8Qxq7tD38W_5KJrTymkW3HduDbx4t_n4vPl-WP9mm_fN-X6aZvXAEg5eyUbdI1RpCuqHVYNWu8RLClNSnlANlzrlQGtXKU1WaW5dsajtb6CYi7uz7uBmff9EA5uOO3P34tf6Q5LjQ</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Back, A.D.</creator><creator>Trappenberg, T.P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>Input variable selection using independent component analysis</title><author>Back, A.D. ; Trappenberg, T.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1159-ed40f5af7496b9ca5bf58dd518946944d15e7ec627164ab669846eca7d588db13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Biomedical measurements</topic><topic>Chemicals</topic><topic>Context modeling</topic><topic>Cost function</topic><topic>Filters</topic><topic>Independent component analysis</topic><topic>Input variables</topic><topic>Optimization methods</topic><topic>Statistical analysis</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Back, A.D.</creatorcontrib><creatorcontrib>Trappenberg, T.P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Back, A.D.</au><au>Trappenberg, T.P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Input variable selection using independent component analysis</atitle><btitle>IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)</btitle><stitle>IJCNN</stitle><date>1999</date><risdate>1999</risdate><volume>2</volume><spage>989</spage><epage>992 vol.2</epage><pages>989-992 vol.2</pages><issn>1098-7576</issn><eissn>1558-3902</eissn><isbn>9780780355293</isbn><isbn>0780355296</isbn><abstract>The problem of input variable selection is well known in the task of modeling real world data. In this paper we propose a novel model-free algorithm for input variable selection using independent component analysis and higher order cross statistics. Experimental results are given which indicate that the method is capable of giving reliable performance and that it outperforms other approaches when the inputs are dependent.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.1999.831089</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1098-7576
ispartof IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339), 1999, Vol.2, p.989-992 vol.2
issn 1098-7576
1558-3902
language eng
recordid cdi_ieee_primary_831089
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical measurements
Chemicals
Context modeling
Cost function
Filters
Independent component analysis
Input variables
Optimization methods
Statistical analysis
Testing
title Input variable selection using independent component analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Input%20variable%20selection%20using%20independent%20component%20analysis&rft.btitle=IJCNN'99.%20International%20Joint%20Conference%20on%20Neural%20Networks.%20Proceedings%20(Cat.%20No.99CH36339)&rft.au=Back,%20A.D.&rft.date=1999&rft.volume=2&rft.spage=989&rft.epage=992%20vol.2&rft.pages=989-992%20vol.2&rft.issn=1098-7576&rft.eissn=1558-3902&rft.isbn=9780780355293&rft.isbn_list=0780355296&rft_id=info:doi/10.1109/IJCNN.1999.831089&rft_dat=%3Cieee_6IE%3E831089%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1159-ed40f5af7496b9ca5bf58dd518946944d15e7ec627164ab669846eca7d588db13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=831089&rfr_iscdi=true