Loading…

Asymptotic stability in energy preserving systems

We discuss asymptotic stability in Hamiltonian and Poisson systems and point out an interesting connection between the Toda lattice system and a certain nonholonomic system.

Saved in:
Bibliographic Details
Main Author: Bloch, A.M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2526 vol.3
container_issue
container_start_page 2524
container_title
container_volume 3
creator Bloch, A.M.
description We discuss asymptotic stability in Hamiltonian and Poisson systems and point out an interesting connection between the Toda lattice system and a certain nonholonomic system.
doi_str_mv 10.1109/CDC.1999.831307
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_831307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>831307</ieee_id><sourcerecordid>831307</sourcerecordid><originalsourceid>FETCH-LOGICAL-i87t-e15f4d9c3d6d59cfa012b38bc7dd59f5c98b2ca1a185ae7b3ad44f91cefdc4a53</originalsourceid><addsrcrecordid>eNotj81KAzEURgMqWGvXgqt5gRnvnUxmkmUZtQoFN92X_NyUSGcckiDk7S1U-OBwNgc-xp4QGkRQL-Pr2KBSqpEcOQw3bKMGCZdx0Qrob9kKUGHdttjfs4eUvgFAQt-vGG5TmZb8k4OtUtYmnEMuVZgrmimeSrVEShR_w3yqUkmZpvTI7rw-J9r8c80O72-H8aPef-0-x-2-DnLINaHwnVOWu94JZb0GbA2Xxg7u4l5YJU1rNWqUQtNguHZd5xVa8s52WvA1e75mAxEdlxgmHcvx-o__AcNiRUw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Asymptotic stability in energy preserving systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bloch, A.M.</creator><creatorcontrib>Bloch, A.M.</creatorcontrib><description>We discuss asymptotic stability in Hamiltonian and Poisson systems and point out an interesting connection between the Toda lattice system and a certain nonholonomic system.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9780780352506</identifier><identifier>ISBN: 0780352505</identifier><identifier>DOI: 10.1109/CDC.1999.831307</identifier><language>eng</language><publisher>IEEE</publisher><subject>Asymptotic stability ; Control systems ; Integral equations ; Lagrangian functions ; Lattices ; Least squares methods ; Level set ; Mathematics ; Mechanical systems ; Reflection</subject><ispartof>Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), 1999, Vol.3, p.2524-2526 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/831307$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/831307$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bloch, A.M.</creatorcontrib><title>Asymptotic stability in energy preserving systems</title><title>Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)</title><addtitle>CDC</addtitle><description>We discuss asymptotic stability in Hamiltonian and Poisson systems and point out an interesting connection between the Toda lattice system and a certain nonholonomic system.</description><subject>Asymptotic stability</subject><subject>Control systems</subject><subject>Integral equations</subject><subject>Lagrangian functions</subject><subject>Lattices</subject><subject>Least squares methods</subject><subject>Level set</subject><subject>Mathematics</subject><subject>Mechanical systems</subject><subject>Reflection</subject><issn>0191-2216</issn><isbn>9780780352506</isbn><isbn>0780352505</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KAzEURgMqWGvXgqt5gRnvnUxmkmUZtQoFN92X_NyUSGcckiDk7S1U-OBwNgc-xp4QGkRQL-Pr2KBSqpEcOQw3bKMGCZdx0Qrob9kKUGHdttjfs4eUvgFAQt-vGG5TmZb8k4OtUtYmnEMuVZgrmimeSrVEShR_w3yqUkmZpvTI7rw-J9r8c80O72-H8aPef-0-x-2-DnLINaHwnVOWu94JZb0GbA2Xxg7u4l5YJU1rNWqUQtNguHZd5xVa8s52WvA1e75mAxEdlxgmHcvx-o__AcNiRUw</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Bloch, A.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>Asymptotic stability in energy preserving systems</title><author>Bloch, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i87t-e15f4d9c3d6d59cfa012b38bc7dd59f5c98b2ca1a185ae7b3ad44f91cefdc4a53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Asymptotic stability</topic><topic>Control systems</topic><topic>Integral equations</topic><topic>Lagrangian functions</topic><topic>Lattices</topic><topic>Least squares methods</topic><topic>Level set</topic><topic>Mathematics</topic><topic>Mechanical systems</topic><topic>Reflection</topic><toplevel>online_resources</toplevel><creatorcontrib>Bloch, A.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bloch, A.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Asymptotic stability in energy preserving systems</atitle><btitle>Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)</btitle><stitle>CDC</stitle><date>1999</date><risdate>1999</risdate><volume>3</volume><spage>2524</spage><epage>2526 vol.3</epage><pages>2524-2526 vol.3</pages><issn>0191-2216</issn><isbn>9780780352506</isbn><isbn>0780352505</isbn><abstract>We discuss asymptotic stability in Hamiltonian and Poisson systems and point out an interesting connection between the Toda lattice system and a certain nonholonomic system.</abstract><pub>IEEE</pub><doi>10.1109/CDC.1999.831307</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), 1999, Vol.3, p.2524-2526 vol.3
issn 0191-2216
language eng
recordid cdi_ieee_primary_831307
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Asymptotic stability
Control systems
Integral equations
Lagrangian functions
Lattices
Least squares methods
Level set
Mathematics
Mechanical systems
Reflection
title Asymptotic stability in energy preserving systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A57%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Asymptotic%20stability%20in%20energy%20preserving%20systems&rft.btitle=Proceedings%20of%20the%2038th%20IEEE%20Conference%20on%20Decision%20and%20Control%20(Cat.%20No.99CH36304)&rft.au=Bloch,%20A.M.&rft.date=1999&rft.volume=3&rft.spage=2524&rft.epage=2526%20vol.3&rft.pages=2524-2526%20vol.3&rft.issn=0191-2216&rft.isbn=9780780352506&rft.isbn_list=0780352505&rft_id=info:doi/10.1109/CDC.1999.831307&rft_dat=%3Cieee_6IE%3E831307%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i87t-e15f4d9c3d6d59cfa012b38bc7dd59f5c98b2ca1a185ae7b3ad44f91cefdc4a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=831307&rfr_iscdi=true