Loading…
Asymptotic stability in energy preserving systems
We discuss asymptotic stability in Hamiltonian and Poisson systems and point out an interesting connection between the Toda lattice system and a certain nonholonomic system.
Saved in:
Main Author: | |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2526 vol.3 |
container_issue | |
container_start_page | 2524 |
container_title | |
container_volume | 3 |
creator | Bloch, A.M. |
description | We discuss asymptotic stability in Hamiltonian and Poisson systems and point out an interesting connection between the Toda lattice system and a certain nonholonomic system. |
doi_str_mv | 10.1109/CDC.1999.831307 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_831307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>831307</ieee_id><sourcerecordid>831307</sourcerecordid><originalsourceid>FETCH-LOGICAL-i87t-e15f4d9c3d6d59cfa012b38bc7dd59f5c98b2ca1a185ae7b3ad44f91cefdc4a53</originalsourceid><addsrcrecordid>eNotj81KAzEURgMqWGvXgqt5gRnvnUxmkmUZtQoFN92X_NyUSGcckiDk7S1U-OBwNgc-xp4QGkRQL-Pr2KBSqpEcOQw3bKMGCZdx0Qrob9kKUGHdttjfs4eUvgFAQt-vGG5TmZb8k4OtUtYmnEMuVZgrmimeSrVEShR_w3yqUkmZpvTI7rw-J9r8c80O72-H8aPef-0-x-2-DnLINaHwnVOWu94JZb0GbA2Xxg7u4l5YJU1rNWqUQtNguHZd5xVa8s52WvA1e75mAxEdlxgmHcvx-o__AcNiRUw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Asymptotic stability in energy preserving systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bloch, A.M.</creator><creatorcontrib>Bloch, A.M.</creatorcontrib><description>We discuss asymptotic stability in Hamiltonian and Poisson systems and point out an interesting connection between the Toda lattice system and a certain nonholonomic system.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9780780352506</identifier><identifier>ISBN: 0780352505</identifier><identifier>DOI: 10.1109/CDC.1999.831307</identifier><language>eng</language><publisher>IEEE</publisher><subject>Asymptotic stability ; Control systems ; Integral equations ; Lagrangian functions ; Lattices ; Least squares methods ; Level set ; Mathematics ; Mechanical systems ; Reflection</subject><ispartof>Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), 1999, Vol.3, p.2524-2526 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/831307$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/831307$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bloch, A.M.</creatorcontrib><title>Asymptotic stability in energy preserving systems</title><title>Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)</title><addtitle>CDC</addtitle><description>We discuss asymptotic stability in Hamiltonian and Poisson systems and point out an interesting connection between the Toda lattice system and a certain nonholonomic system.</description><subject>Asymptotic stability</subject><subject>Control systems</subject><subject>Integral equations</subject><subject>Lagrangian functions</subject><subject>Lattices</subject><subject>Least squares methods</subject><subject>Level set</subject><subject>Mathematics</subject><subject>Mechanical systems</subject><subject>Reflection</subject><issn>0191-2216</issn><isbn>9780780352506</isbn><isbn>0780352505</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KAzEURgMqWGvXgqt5gRnvnUxmkmUZtQoFN92X_NyUSGcckiDk7S1U-OBwNgc-xp4QGkRQL-Pr2KBSqpEcOQw3bKMGCZdx0Qrob9kKUGHdttjfs4eUvgFAQt-vGG5TmZb8k4OtUtYmnEMuVZgrmimeSrVEShR_w3yqUkmZpvTI7rw-J9r8c80O72-H8aPef-0-x-2-DnLINaHwnVOWu94JZb0GbA2Xxg7u4l5YJU1rNWqUQtNguHZd5xVa8s52WvA1e75mAxEdlxgmHcvx-o__AcNiRUw</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Bloch, A.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>Asymptotic stability in energy preserving systems</title><author>Bloch, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i87t-e15f4d9c3d6d59cfa012b38bc7dd59f5c98b2ca1a185ae7b3ad44f91cefdc4a53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Asymptotic stability</topic><topic>Control systems</topic><topic>Integral equations</topic><topic>Lagrangian functions</topic><topic>Lattices</topic><topic>Least squares methods</topic><topic>Level set</topic><topic>Mathematics</topic><topic>Mechanical systems</topic><topic>Reflection</topic><toplevel>online_resources</toplevel><creatorcontrib>Bloch, A.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bloch, A.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Asymptotic stability in energy preserving systems</atitle><btitle>Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)</btitle><stitle>CDC</stitle><date>1999</date><risdate>1999</risdate><volume>3</volume><spage>2524</spage><epage>2526 vol.3</epage><pages>2524-2526 vol.3</pages><issn>0191-2216</issn><isbn>9780780352506</isbn><isbn>0780352505</isbn><abstract>We discuss asymptotic stability in Hamiltonian and Poisson systems and point out an interesting connection between the Toda lattice system and a certain nonholonomic system.</abstract><pub>IEEE</pub><doi>10.1109/CDC.1999.831307</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0191-2216 |
ispartof | Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), 1999, Vol.3, p.2524-2526 vol.3 |
issn | 0191-2216 |
language | eng |
recordid | cdi_ieee_primary_831307 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Asymptotic stability Control systems Integral equations Lagrangian functions Lattices Least squares methods Level set Mathematics Mechanical systems Reflection |
title | Asymptotic stability in energy preserving systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A57%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Asymptotic%20stability%20in%20energy%20preserving%20systems&rft.btitle=Proceedings%20of%20the%2038th%20IEEE%20Conference%20on%20Decision%20and%20Control%20(Cat.%20No.99CH36304)&rft.au=Bloch,%20A.M.&rft.date=1999&rft.volume=3&rft.spage=2524&rft.epage=2526%20vol.3&rft.pages=2524-2526%20vol.3&rft.issn=0191-2216&rft.isbn=9780780352506&rft.isbn_list=0780352505&rft_id=info:doi/10.1109/CDC.1999.831307&rft_dat=%3Cieee_6IE%3E831307%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i87t-e15f4d9c3d6d59cfa012b38bc7dd59f5c98b2ca1a185ae7b3ad44f91cefdc4a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=831307&rfr_iscdi=true |