Loading…

Performance Analysis for Channel Estimation With 1-Bit ADC and Unknown Quantization Threshold

In this work, the problem of signal parameter estimation from measurements acquired by a low-complexity analog-to-digital converter (ADC) with 1-bit output resolution and an unknown quantization threshold is considered. Single-comparator ADCs are energy-efficient and can be operated at ultrahigh sam...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2018-05, Vol.66 (10), p.2557-2571
Main Authors: Stein, Manuel S., Bar, Shahar, Nossek, Josef A., Tabrikian, Joseph
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c263t-f2ffc0bc866bd096466e264659aa5b4fca4429ce6878cb5408fd5a9da73deef83
cites cdi_FETCH-LOGICAL-c263t-f2ffc0bc866bd096466e264659aa5b4fca4429ce6878cb5408fd5a9da73deef83
container_end_page 2571
container_issue 10
container_start_page 2557
container_title IEEE transactions on signal processing
container_volume 66
creator Stein, Manuel S.
Bar, Shahar
Nossek, Josef A.
Tabrikian, Joseph
description In this work, the problem of signal parameter estimation from measurements acquired by a low-complexity analog-to-digital converter (ADC) with 1-bit output resolution and an unknown quantization threshold is considered. Single-comparator ADCs are energy-efficient and can be operated at ultrahigh sampling rates. For analysis of such systems, a fixed and known quantization threshold is usually assumed. In the symmetric case, i.e., zero hard-limiting offset, it is known that in the low signal-to-noise ratio (SNR) regime the signal processing performance degrades moderately by 2/π (-1.96 dB) when comparing to an ideal ∞-bit converter. Due to hardware imperfections, low-complexity 1-bit ADCs will, in practice, exhibit an unknown threshold different from zero. Therefore, we study the accuracy that can be obtained with received data processed by a hard-limiter with unknown quantization level by using asymptotically optimal channel estimation algorithms. To characterize the estimation performance of these nonlinear algorithms, we employ analytic error expressions for different setups while modeling the offset as a nuisance parameter. In the low SNR regime, we establish the necessary condition for a vanishing loss due to missing offset knowledge at the receiver. As an application, we consider the estimation of single-input single-output wireless channels with intersymbol interference and validate our analysis by comparing the analytic and experimental performance of the studied estimation algorithms. Finally, we comment on the extension to multiple-input multiple-output channel models.
doi_str_mv 10.1109/TSP.2018.2815022
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8314750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8314750</ieee_id><sourcerecordid>10_1109_TSP_2018_2815022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-f2ffc0bc866bd096466e264659aa5b4fca4429ce6878cb5408fd5a9da73deef83</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKfvgi_5Ap03aZImj7POPzBwYoe-SEnThFa7VJKKzE9vx4Yv914u5xwOP4QuCcwIAXVdvKxmFIicUUk4UHqEJkQxkgDLxPF4A08TLrO3U3QW4wcAYUyJCXpf2eD6sNHeWDz3utvGNuLxg_NGe287vIhDu9FD23v82g4NJslNO-D5bY61r_Haf_r-x-Pnb-2H9nevK5pgY9N39Tk6cbqL9uKwp2h9tyjyh2T5dP-Yz5eJoSIdEkedM1AZKURVgxJMCEvHyZXWvGLOaMaoMlbITJqKM5Cu5lrVOktra51Mpwj2uSb0MQbryq8wlg7bkkC5w1OOeModnvKAZ7Rc7S2ttfZfLlPCMg7pHxFmYlU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Performance Analysis for Channel Estimation With 1-Bit ADC and Unknown Quantization Threshold</title><source>IEEE Xplore (Online service)</source><creator>Stein, Manuel S. ; Bar, Shahar ; Nossek, Josef A. ; Tabrikian, Joseph</creator><creatorcontrib>Stein, Manuel S. ; Bar, Shahar ; Nossek, Josef A. ; Tabrikian, Joseph</creatorcontrib><description>In this work, the problem of signal parameter estimation from measurements acquired by a low-complexity analog-to-digital converter (ADC) with 1-bit output resolution and an unknown quantization threshold is considered. Single-comparator ADCs are energy-efficient and can be operated at ultrahigh sampling rates. For analysis of such systems, a fixed and known quantization threshold is usually assumed. In the symmetric case, i.e., zero hard-limiting offset, it is known that in the low signal-to-noise ratio (SNR) regime the signal processing performance degrades moderately by 2/π (-1.96 dB) when comparing to an ideal ∞-bit converter. Due to hardware imperfections, low-complexity 1-bit ADCs will, in practice, exhibit an unknown threshold different from zero. Therefore, we study the accuracy that can be obtained with received data processed by a hard-limiter with unknown quantization level by using asymptotically optimal channel estimation algorithms. To characterize the estimation performance of these nonlinear algorithms, we employ analytic error expressions for different setups while modeling the offset as a nuisance parameter. In the low SNR regime, we establish the necessary condition for a vanishing loss due to missing offset knowledge at the receiver. As an application, we consider the estimation of single-input single-output wireless channels with intersymbol interference and validate our analysis by comparing the analytic and experimental performance of the studied estimation algorithms. Finally, we comment on the extension to multiple-input multiple-output channel models.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2018.2815022</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>1-bit ADC ; Analog-digital conversion ; Channel estimation ; Cramér–Rao bounds ; Estimation ; hard-limiting loss ; intersymbol interference ; nuisance parameter ; Quantization (signal) ; quantization threshold ; Receivers ; Signal processing algorithms ; Signal to noise ratio ; wireless communication</subject><ispartof>IEEE transactions on signal processing, 2018-05, Vol.66 (10), p.2557-2571</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-f2ffc0bc866bd096466e264659aa5b4fca4429ce6878cb5408fd5a9da73deef83</citedby><cites>FETCH-LOGICAL-c263t-f2ffc0bc866bd096466e264659aa5b4fca4429ce6878cb5408fd5a9da73deef83</cites><orcidid>0000-0002-9758-3104 ; 0000-0003-4865-847X ; 0000-0002-5205-3716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8314750$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Stein, Manuel S.</creatorcontrib><creatorcontrib>Bar, Shahar</creatorcontrib><creatorcontrib>Nossek, Josef A.</creatorcontrib><creatorcontrib>Tabrikian, Joseph</creatorcontrib><title>Performance Analysis for Channel Estimation With 1-Bit ADC and Unknown Quantization Threshold</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In this work, the problem of signal parameter estimation from measurements acquired by a low-complexity analog-to-digital converter (ADC) with 1-bit output resolution and an unknown quantization threshold is considered. Single-comparator ADCs are energy-efficient and can be operated at ultrahigh sampling rates. For analysis of such systems, a fixed and known quantization threshold is usually assumed. In the symmetric case, i.e., zero hard-limiting offset, it is known that in the low signal-to-noise ratio (SNR) regime the signal processing performance degrades moderately by 2/π (-1.96 dB) when comparing to an ideal ∞-bit converter. Due to hardware imperfections, low-complexity 1-bit ADCs will, in practice, exhibit an unknown threshold different from zero. Therefore, we study the accuracy that can be obtained with received data processed by a hard-limiter with unknown quantization level by using asymptotically optimal channel estimation algorithms. To characterize the estimation performance of these nonlinear algorithms, we employ analytic error expressions for different setups while modeling the offset as a nuisance parameter. In the low SNR regime, we establish the necessary condition for a vanishing loss due to missing offset knowledge at the receiver. As an application, we consider the estimation of single-input single-output wireless channels with intersymbol interference and validate our analysis by comparing the analytic and experimental performance of the studied estimation algorithms. Finally, we comment on the extension to multiple-input multiple-output channel models.</description><subject>1-bit ADC</subject><subject>Analog-digital conversion</subject><subject>Channel estimation</subject><subject>Cramér–Rao bounds</subject><subject>Estimation</subject><subject>hard-limiting loss</subject><subject>intersymbol interference</subject><subject>nuisance parameter</subject><subject>Quantization (signal)</subject><subject>quantization threshold</subject><subject>Receivers</subject><subject>Signal processing algorithms</subject><subject>Signal to noise ratio</subject><subject>wireless communication</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOKfvgi_5Ap03aZImj7POPzBwYoe-SEnThFa7VJKKzE9vx4Yv914u5xwOP4QuCcwIAXVdvKxmFIicUUk4UHqEJkQxkgDLxPF4A08TLrO3U3QW4wcAYUyJCXpf2eD6sNHeWDz3utvGNuLxg_NGe287vIhDu9FD23v82g4NJslNO-D5bY61r_Haf_r-x-Pnb-2H9nevK5pgY9N39Tk6cbqL9uKwp2h9tyjyh2T5dP-Yz5eJoSIdEkedM1AZKURVgxJMCEvHyZXWvGLOaMaoMlbITJqKM5Cu5lrVOktra51Mpwj2uSb0MQbryq8wlg7bkkC5w1OOeModnvKAZ7Rc7S2ttfZfLlPCMg7pHxFmYlU</recordid><startdate>20180515</startdate><enddate>20180515</enddate><creator>Stein, Manuel S.</creator><creator>Bar, Shahar</creator><creator>Nossek, Josef A.</creator><creator>Tabrikian, Joseph</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9758-3104</orcidid><orcidid>https://orcid.org/0000-0003-4865-847X</orcidid><orcidid>https://orcid.org/0000-0002-5205-3716</orcidid></search><sort><creationdate>20180515</creationdate><title>Performance Analysis for Channel Estimation With 1-Bit ADC and Unknown Quantization Threshold</title><author>Stein, Manuel S. ; Bar, Shahar ; Nossek, Josef A. ; Tabrikian, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-f2ffc0bc866bd096466e264659aa5b4fca4429ce6878cb5408fd5a9da73deef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>1-bit ADC</topic><topic>Analog-digital conversion</topic><topic>Channel estimation</topic><topic>Cramér–Rao bounds</topic><topic>Estimation</topic><topic>hard-limiting loss</topic><topic>intersymbol interference</topic><topic>nuisance parameter</topic><topic>Quantization (signal)</topic><topic>quantization threshold</topic><topic>Receivers</topic><topic>Signal processing algorithms</topic><topic>Signal to noise ratio</topic><topic>wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stein, Manuel S.</creatorcontrib><creatorcontrib>Bar, Shahar</creatorcontrib><creatorcontrib>Nossek, Josef A.</creatorcontrib><creatorcontrib>Tabrikian, Joseph</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stein, Manuel S.</au><au>Bar, Shahar</au><au>Nossek, Josef A.</au><au>Tabrikian, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Analysis for Channel Estimation With 1-Bit ADC and Unknown Quantization Threshold</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2018-05-15</date><risdate>2018</risdate><volume>66</volume><issue>10</issue><spage>2557</spage><epage>2571</epage><pages>2557-2571</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In this work, the problem of signal parameter estimation from measurements acquired by a low-complexity analog-to-digital converter (ADC) with 1-bit output resolution and an unknown quantization threshold is considered. Single-comparator ADCs are energy-efficient and can be operated at ultrahigh sampling rates. For analysis of such systems, a fixed and known quantization threshold is usually assumed. In the symmetric case, i.e., zero hard-limiting offset, it is known that in the low signal-to-noise ratio (SNR) regime the signal processing performance degrades moderately by 2/π (-1.96 dB) when comparing to an ideal ∞-bit converter. Due to hardware imperfections, low-complexity 1-bit ADCs will, in practice, exhibit an unknown threshold different from zero. Therefore, we study the accuracy that can be obtained with received data processed by a hard-limiter with unknown quantization level by using asymptotically optimal channel estimation algorithms. To characterize the estimation performance of these nonlinear algorithms, we employ analytic error expressions for different setups while modeling the offset as a nuisance parameter. In the low SNR regime, we establish the necessary condition for a vanishing loss due to missing offset knowledge at the receiver. As an application, we consider the estimation of single-input single-output wireless channels with intersymbol interference and validate our analysis by comparing the analytic and experimental performance of the studied estimation algorithms. Finally, we comment on the extension to multiple-input multiple-output channel models.</abstract><pub>IEEE</pub><doi>10.1109/TSP.2018.2815022</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9758-3104</orcidid><orcidid>https://orcid.org/0000-0003-4865-847X</orcidid><orcidid>https://orcid.org/0000-0002-5205-3716</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2018-05, Vol.66 (10), p.2557-2571
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_8314750
source IEEE Xplore (Online service)
subjects 1-bit ADC
Analog-digital conversion
Channel estimation
Cramér–Rao bounds
Estimation
hard-limiting loss
intersymbol interference
nuisance parameter
Quantization (signal)
quantization threshold
Receivers
Signal processing algorithms
Signal to noise ratio
wireless communication
title Performance Analysis for Channel Estimation With 1-Bit ADC and Unknown Quantization Threshold
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Analysis%20for%20Channel%20Estimation%20With%201-Bit%20ADC%20and%20Unknown%20Quantization%20Threshold&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Stein,%20Manuel%20S.&rft.date=2018-05-15&rft.volume=66&rft.issue=10&rft.spage=2557&rft.epage=2571&rft.pages=2557-2571&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2018.2815022&rft_dat=%3Ccrossref_ieee_%3E10_1109_TSP_2018_2815022%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-f2ffc0bc866bd096466e264659aa5b4fca4429ce6878cb5408fd5a9da73deef83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8314750&rfr_iscdi=true