Loading…

Analysis of neural response for excitation-inhibition balanced networks with reversal potentials for large numbers of inputs

The observed variability in the spike rate of cortical neurons has been hypothesized to result from a balance in the excitatory and inhibitory synaptic inputs that the neurons receive. The coefficient of variation of the spike rate is calculated in the limit of a large number of inputs using the int...

Full description

Saved in:
Bibliographic Details
Main Author: Burkitt, A.N.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 308 vol.1
container_issue
container_start_page 305
container_title
container_volume 1
creator Burkitt, A.N.
description The observed variability in the spike rate of cortical neurons has been hypothesized to result from a balance in the excitatory and inhibitory synaptic inputs that the neurons receive. The coefficient of variation of the spike rate is calculated in the limit of a large number of inputs using the integrated-input technique, which is extended here to include the effect of reversal potentials. The output spike rate is found to increase monotonically over two orders of magnitude, thereby solving the dynamic range (or gain control) problem. The coefficient of variation is approximately 1.0 for low input rates and increases to around 1.6 at high input rates, well within the range observed in the response of cortical neurons.
doi_str_mv 10.1109/IJCNN.1999.831507
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_831507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>831507</ieee_id><sourcerecordid>831507</sourcerecordid><originalsourceid>FETCH-ieee_primary_8315073</originalsourceid><addsrcrecordid>eNp9j8tOwzAQRS0eEi3wAbDyDySMG5zES1SBCouu2FdOmdAB1448DqUSH48LrFnNlc59aIS4UlAqBebm8Wm-XJbKGFO2ldLQHImJ0rotKgOzYzGFpoVK65mpTzIA0xaNbuozMWV-A6ihuTUT8XXnrdszsQy99DhG62REHoJnlH2IEj_XlGyi4AvyG-roIGVnnfVrfMmRtAvxneWO0iYnPzByrhhCQp_IOv4pcTa-ovTjtsv4sER-GBNfiNM-W_Dy756L64f75_miIERcDZG2Nu5Xv89V_8JvA9NTgQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Analysis of neural response for excitation-inhibition balanced networks with reversal potentials for large numbers of inputs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Burkitt, A.N.</creator><creatorcontrib>Burkitt, A.N.</creatorcontrib><description>The observed variability in the spike rate of cortical neurons has been hypothesized to result from a balance in the excitatory and inhibitory synaptic inputs that the neurons receive. The coefficient of variation of the spike rate is calculated in the limit of a large number of inputs using the integrated-input technique, which is extended here to include the effect of reversal potentials. The output spike rate is found to increase monotonically over two orders of magnitude, thereby solving the dynamic range (or gain control) problem. The coefficient of variation is approximately 1.0 for low input rates and increases to around 1.6 at high input rates, well within the range observed in the response of cortical neurons.</description><identifier>ISSN: 1098-7576</identifier><identifier>ISBN: 0780355296</identifier><identifier>ISBN: 9780780355293</identifier><identifier>EISSN: 1558-3902</identifier><identifier>DOI: 10.1109/IJCNN.1999.831507</identifier><language>eng</language><publisher>IEEE</publisher><subject>Australia ; Biomembranes ; Brain modeling ; Ear ; Fires ; Fluctuations ; Gain control ; Neurons ; Numerical simulation ; Predictive models</subject><ispartof>IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339), 1999, Vol.1, p.305-308 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/831507$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/831507$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Burkitt, A.N.</creatorcontrib><title>Analysis of neural response for excitation-inhibition balanced networks with reversal potentials for large numbers of inputs</title><title>IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)</title><addtitle>IJCNN</addtitle><description>The observed variability in the spike rate of cortical neurons has been hypothesized to result from a balance in the excitatory and inhibitory synaptic inputs that the neurons receive. The coefficient of variation of the spike rate is calculated in the limit of a large number of inputs using the integrated-input technique, which is extended here to include the effect of reversal potentials. The output spike rate is found to increase monotonically over two orders of magnitude, thereby solving the dynamic range (or gain control) problem. The coefficient of variation is approximately 1.0 for low input rates and increases to around 1.6 at high input rates, well within the range observed in the response of cortical neurons.</description><subject>Australia</subject><subject>Biomembranes</subject><subject>Brain modeling</subject><subject>Ear</subject><subject>Fires</subject><subject>Fluctuations</subject><subject>Gain control</subject><subject>Neurons</subject><subject>Numerical simulation</subject><subject>Predictive models</subject><issn>1098-7576</issn><issn>1558-3902</issn><isbn>0780355296</isbn><isbn>9780780355293</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9j8tOwzAQRS0eEi3wAbDyDySMG5zES1SBCouu2FdOmdAB1448DqUSH48LrFnNlc59aIS4UlAqBebm8Wm-XJbKGFO2ldLQHImJ0rotKgOzYzGFpoVK65mpTzIA0xaNbuozMWV-A6ihuTUT8XXnrdszsQy99DhG62REHoJnlH2IEj_XlGyi4AvyG-roIGVnnfVrfMmRtAvxneWO0iYnPzByrhhCQp_IOv4pcTa-ovTjtsv4sER-GBNfiNM-W_Dy756L64f75_miIERcDZG2Nu5Xv89V_8JvA9NTgQ</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Burkitt, A.N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>Analysis of neural response for excitation-inhibition balanced networks with reversal potentials for large numbers of inputs</title><author>Burkitt, A.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_8315073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Australia</topic><topic>Biomembranes</topic><topic>Brain modeling</topic><topic>Ear</topic><topic>Fires</topic><topic>Fluctuations</topic><topic>Gain control</topic><topic>Neurons</topic><topic>Numerical simulation</topic><topic>Predictive models</topic><toplevel>online_resources</toplevel><creatorcontrib>Burkitt, A.N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore Digital Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Burkitt, A.N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Analysis of neural response for excitation-inhibition balanced networks with reversal potentials for large numbers of inputs</atitle><btitle>IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)</btitle><stitle>IJCNN</stitle><date>1999</date><risdate>1999</risdate><volume>1</volume><spage>305</spage><epage>308 vol.1</epage><pages>305-308 vol.1</pages><issn>1098-7576</issn><eissn>1558-3902</eissn><isbn>0780355296</isbn><isbn>9780780355293</isbn><abstract>The observed variability in the spike rate of cortical neurons has been hypothesized to result from a balance in the excitatory and inhibitory synaptic inputs that the neurons receive. The coefficient of variation of the spike rate is calculated in the limit of a large number of inputs using the integrated-input technique, which is extended here to include the effect of reversal potentials. The output spike rate is found to increase monotonically over two orders of magnitude, thereby solving the dynamic range (or gain control) problem. The coefficient of variation is approximately 1.0 for low input rates and increases to around 1.6 at high input rates, well within the range observed in the response of cortical neurons.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.1999.831507</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1098-7576
ispartof IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339), 1999, Vol.1, p.305-308 vol.1
issn 1098-7576
1558-3902
language eng
recordid cdi_ieee_primary_831507
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Australia
Biomembranes
Brain modeling
Ear
Fires
Fluctuations
Gain control
Neurons
Numerical simulation
Predictive models
title Analysis of neural response for excitation-inhibition balanced networks with reversal potentials for large numbers of inputs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A53%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Analysis%20of%20neural%20response%20for%20excitation-inhibition%20balanced%20networks%20with%20reversal%20potentials%20for%20large%20numbers%20of%20inputs&rft.btitle=IJCNN'99.%20International%20Joint%20Conference%20on%20Neural%20Networks.%20Proceedings%20(Cat.%20No.99CH36339)&rft.au=Burkitt,%20A.N.&rft.date=1999&rft.volume=1&rft.spage=305&rft.epage=308%20vol.1&rft.pages=305-308%20vol.1&rft.issn=1098-7576&rft.eissn=1558-3902&rft.isbn=0780355296&rft.isbn_list=9780780355293&rft_id=info:doi/10.1109/IJCNN.1999.831507&rft_dat=%3Cieee_6IE%3E831507%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_8315073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=831507&rfr_iscdi=true