Loading…
Analysis of neural response for excitation-inhibition balanced networks with reversal potentials for large numbers of inputs
The observed variability in the spike rate of cortical neurons has been hypothesized to result from a balance in the excitatory and inhibitory synaptic inputs that the neurons receive. The coefficient of variation of the spike rate is calculated in the limit of a large number of inputs using the int...
Saved in:
Main Author: | |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 308 vol.1 |
container_issue | |
container_start_page | 305 |
container_title | |
container_volume | 1 |
creator | Burkitt, A.N. |
description | The observed variability in the spike rate of cortical neurons has been hypothesized to result from a balance in the excitatory and inhibitory synaptic inputs that the neurons receive. The coefficient of variation of the spike rate is calculated in the limit of a large number of inputs using the integrated-input technique, which is extended here to include the effect of reversal potentials. The output spike rate is found to increase monotonically over two orders of magnitude, thereby solving the dynamic range (or gain control) problem. The coefficient of variation is approximately 1.0 for low input rates and increases to around 1.6 at high input rates, well within the range observed in the response of cortical neurons. |
doi_str_mv | 10.1109/IJCNN.1999.831507 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_831507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>831507</ieee_id><sourcerecordid>831507</sourcerecordid><originalsourceid>FETCH-ieee_primary_8315073</originalsourceid><addsrcrecordid>eNp9j8tOwzAQRS0eEi3wAbDyDySMG5zES1SBCouu2FdOmdAB1448DqUSH48LrFnNlc59aIS4UlAqBebm8Wm-XJbKGFO2ldLQHImJ0rotKgOzYzGFpoVK65mpTzIA0xaNbuozMWV-A6ihuTUT8XXnrdszsQy99DhG62REHoJnlH2IEj_XlGyi4AvyG-roIGVnnfVrfMmRtAvxneWO0iYnPzByrhhCQp_IOv4pcTa-ovTjtsv4sER-GBNfiNM-W_Dy756L64f75_miIERcDZG2Nu5Xv89V_8JvA9NTgQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Analysis of neural response for excitation-inhibition balanced networks with reversal potentials for large numbers of inputs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Burkitt, A.N.</creator><creatorcontrib>Burkitt, A.N.</creatorcontrib><description>The observed variability in the spike rate of cortical neurons has been hypothesized to result from a balance in the excitatory and inhibitory synaptic inputs that the neurons receive. The coefficient of variation of the spike rate is calculated in the limit of a large number of inputs using the integrated-input technique, which is extended here to include the effect of reversal potentials. The output spike rate is found to increase monotonically over two orders of magnitude, thereby solving the dynamic range (or gain control) problem. The coefficient of variation is approximately 1.0 for low input rates and increases to around 1.6 at high input rates, well within the range observed in the response of cortical neurons.</description><identifier>ISSN: 1098-7576</identifier><identifier>ISBN: 0780355296</identifier><identifier>ISBN: 9780780355293</identifier><identifier>EISSN: 1558-3902</identifier><identifier>DOI: 10.1109/IJCNN.1999.831507</identifier><language>eng</language><publisher>IEEE</publisher><subject>Australia ; Biomembranes ; Brain modeling ; Ear ; Fires ; Fluctuations ; Gain control ; Neurons ; Numerical simulation ; Predictive models</subject><ispartof>IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339), 1999, Vol.1, p.305-308 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/831507$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/831507$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Burkitt, A.N.</creatorcontrib><title>Analysis of neural response for excitation-inhibition balanced networks with reversal potentials for large numbers of inputs</title><title>IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)</title><addtitle>IJCNN</addtitle><description>The observed variability in the spike rate of cortical neurons has been hypothesized to result from a balance in the excitatory and inhibitory synaptic inputs that the neurons receive. The coefficient of variation of the spike rate is calculated in the limit of a large number of inputs using the integrated-input technique, which is extended here to include the effect of reversal potentials. The output spike rate is found to increase monotonically over two orders of magnitude, thereby solving the dynamic range (or gain control) problem. The coefficient of variation is approximately 1.0 for low input rates and increases to around 1.6 at high input rates, well within the range observed in the response of cortical neurons.</description><subject>Australia</subject><subject>Biomembranes</subject><subject>Brain modeling</subject><subject>Ear</subject><subject>Fires</subject><subject>Fluctuations</subject><subject>Gain control</subject><subject>Neurons</subject><subject>Numerical simulation</subject><subject>Predictive models</subject><issn>1098-7576</issn><issn>1558-3902</issn><isbn>0780355296</isbn><isbn>9780780355293</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9j8tOwzAQRS0eEi3wAbDyDySMG5zES1SBCouu2FdOmdAB1448DqUSH48LrFnNlc59aIS4UlAqBebm8Wm-XJbKGFO2ldLQHImJ0rotKgOzYzGFpoVK65mpTzIA0xaNbuozMWV-A6ihuTUT8XXnrdszsQy99DhG62REHoJnlH2IEj_XlGyi4AvyG-roIGVnnfVrfMmRtAvxneWO0iYnPzByrhhCQp_IOv4pcTa-ovTjtsv4sER-GBNfiNM-W_Dy756L64f75_miIERcDZG2Nu5Xv89V_8JvA9NTgQ</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Burkitt, A.N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>Analysis of neural response for excitation-inhibition balanced networks with reversal potentials for large numbers of inputs</title><author>Burkitt, A.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_8315073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Australia</topic><topic>Biomembranes</topic><topic>Brain modeling</topic><topic>Ear</topic><topic>Fires</topic><topic>Fluctuations</topic><topic>Gain control</topic><topic>Neurons</topic><topic>Numerical simulation</topic><topic>Predictive models</topic><toplevel>online_resources</toplevel><creatorcontrib>Burkitt, A.N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore Digital Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Burkitt, A.N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Analysis of neural response for excitation-inhibition balanced networks with reversal potentials for large numbers of inputs</atitle><btitle>IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)</btitle><stitle>IJCNN</stitle><date>1999</date><risdate>1999</risdate><volume>1</volume><spage>305</spage><epage>308 vol.1</epage><pages>305-308 vol.1</pages><issn>1098-7576</issn><eissn>1558-3902</eissn><isbn>0780355296</isbn><isbn>9780780355293</isbn><abstract>The observed variability in the spike rate of cortical neurons has been hypothesized to result from a balance in the excitatory and inhibitory synaptic inputs that the neurons receive. The coefficient of variation of the spike rate is calculated in the limit of a large number of inputs using the integrated-input technique, which is extended here to include the effect of reversal potentials. The output spike rate is found to increase monotonically over two orders of magnitude, thereby solving the dynamic range (or gain control) problem. The coefficient of variation is approximately 1.0 for low input rates and increases to around 1.6 at high input rates, well within the range observed in the response of cortical neurons.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.1999.831507</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1098-7576 |
ispartof | IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339), 1999, Vol.1, p.305-308 vol.1 |
issn | 1098-7576 1558-3902 |
language | eng |
recordid | cdi_ieee_primary_831507 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Australia Biomembranes Brain modeling Ear Fires Fluctuations Gain control Neurons Numerical simulation Predictive models |
title | Analysis of neural response for excitation-inhibition balanced networks with reversal potentials for large numbers of inputs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A53%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Analysis%20of%20neural%20response%20for%20excitation-inhibition%20balanced%20networks%20with%20reversal%20potentials%20for%20large%20numbers%20of%20inputs&rft.btitle=IJCNN'99.%20International%20Joint%20Conference%20on%20Neural%20Networks.%20Proceedings%20(Cat.%20No.99CH36339)&rft.au=Burkitt,%20A.N.&rft.date=1999&rft.volume=1&rft.spage=305&rft.epage=308%20vol.1&rft.pages=305-308%20vol.1&rft.issn=1098-7576&rft.eissn=1558-3902&rft.isbn=0780355296&rft.isbn_list=9780780355293&rft_id=info:doi/10.1109/IJCNN.1999.831507&rft_dat=%3Cieee_6IE%3E831507%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_8315073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=831507&rfr_iscdi=true |