Loading…

A Hybrid Multiobjective Particle Swarm Optimization Algorithm Based on R2 Indicator

When dealing with complex multiobjective problems, particle swarm optimization algorithm is easy to fall into local optimum and lead to uneven distribution. Therefore, this paper presents a hybrid multiobjective particle swarm optimization algorithm based on R2 indicator (R2HMOPSO) for solving multi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2018-01, Vol.6, p.14710-14721
Main Authors: Wei, Li-Xin, Li, Xin, Fan, Rui, Sun, Hao, Hu, Zi-Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-8d57d8f72e48fef9c3dd9b04a52720ceb2c9f4322ab5973e43069472c0ff30be3
cites cdi_FETCH-LOGICAL-c408t-8d57d8f72e48fef9c3dd9b04a52720ceb2c9f4322ab5973e43069472c0ff30be3
container_end_page 14721
container_issue
container_start_page 14710
container_title IEEE access
container_volume 6
creator Wei, Li-Xin
Li, Xin
Fan, Rui
Sun, Hao
Hu, Zi-Yu
description When dealing with complex multiobjective problems, particle swarm optimization algorithm is easy to fall into local optimum and lead to uneven distribution. Therefore, this paper presents a hybrid multiobjective particle swarm optimization algorithm based on R2 indicator (R2HMOPSO) for solving multiobjective optimization problem. The proposed algorithm uses the sigmoid function mapping method to adjust the inertia weight and learning factors in order to tradeoffs the exploration and exploitation process effectively. In addition, simulation binary crossover operator is designed to reinitialize the particles to improve the search capability of the algorithm and to prevent particles from falling into local optimum and premature convergence. R2 indicator is incorporated into the R2HMOPSO algorithm so as to deal with the solutions of uneven distribution on the true Pareto front. Besides, polynomial mutation is used to maintain diversity in the external archive. The improved algorithm is evaluated on standard benchmarks. By comparing it with four state-of-the-art multiobjective optimization algorithms, the simulation results show that R2HMOPSO algorithm is competitive and effective in terms of convergence and distribution.
doi_str_mv 10.1109/ACCESS.2018.2812701
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8318574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8318574</ieee_id><doaj_id>oai_doaj_org_article_931fddc867a14d27afcfaa63ad2c7044</doaj_id><sourcerecordid>2455916099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8d57d8f72e48fef9c3dd9b04a52720ceb2c9f4322ab5973e43069472c0ff30be3</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIVNAv6MUS5xS_EtvHUBVaqaiIwtly_CiOmro4Kah8PSmpKvayq9HM7K4mSUYIjhGC4r6YTKar1RhDxMeYI8wgukgGGOUiJRnJL__N18mwaSrYFe-gjA2SVQFmhzJ6A573m9aHsrK69V8WvKjYer2xYPWtYg2Wu9bX_kd1lC0oNusQfftRgwfVWAM66BWD-dZ4rdoQb5MrpzaNHZ76TfL-OH2bzNLF8mk-KRapppC3KTcZM9wxbCl31glNjBElpCrDDENtS6yFowRjVWaCEUsJzAVlWEPnCCwtuUnmva8JqpK76GsVDzIoL_-AENfy9IQUBDljNM-ZQtRgppx2SuVEGawZpLTzuuu9djF87m3Tyirs47Y7X2KaZQLlUIiORXqWjqFponXnrQjKYxiyD0Mew5CnMDrVqFd5a-1ZwQniGaPkFxFPhTc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455916099</pqid></control><display><type>article</type><title>A Hybrid Multiobjective Particle Swarm Optimization Algorithm Based on R2 Indicator</title><source>IEEE Xplore Open Access Journals</source><creator>Wei, Li-Xin ; Li, Xin ; Fan, Rui ; Sun, Hao ; Hu, Zi-Yu</creator><creatorcontrib>Wei, Li-Xin ; Li, Xin ; Fan, Rui ; Sun, Hao ; Hu, Zi-Yu</creatorcontrib><description>When dealing with complex multiobjective problems, particle swarm optimization algorithm is easy to fall into local optimum and lead to uneven distribution. Therefore, this paper presents a hybrid multiobjective particle swarm optimization algorithm based on R2 indicator (R2HMOPSO) for solving multiobjective optimization problem. The proposed algorithm uses the sigmoid function mapping method to adjust the inertia weight and learning factors in order to tradeoffs the exploration and exploitation process effectively. In addition, simulation binary crossover operator is designed to reinitialize the particles to improve the search capability of the algorithm and to prevent particles from falling into local optimum and premature convergence. R2 indicator is incorporated into the R2HMOPSO algorithm so as to deal with the solutions of uneven distribution on the true Pareto front. Besides, polynomial mutation is used to maintain diversity in the external archive. The improved algorithm is evaluated on standard benchmarks. By comparing it with four state-of-the-art multiobjective optimization algorithms, the simulation results show that R2HMOPSO algorithm is competitive and effective in terms of convergence and distribution.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2812701</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Approximation algorithms ; Convergence ; Crossovers ; decomposition method ; Multiobjective optimization problem ; Multiple objective analysis ; Mutation ; Optimization algorithms ; Pareto optimization ; particle swarm algorithm ; Particle swarm optimization ; Polynomials ; R2 indicator ; Sociology</subject><ispartof>IEEE access, 2018-01, Vol.6, p.14710-14721</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8d57d8f72e48fef9c3dd9b04a52720ceb2c9f4322ab5973e43069472c0ff30be3</citedby><cites>FETCH-LOGICAL-c408t-8d57d8f72e48fef9c3dd9b04a52720ceb2c9f4322ab5973e43069472c0ff30be3</cites><orcidid>0000-0002-0342-6547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8318574$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27614,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Wei, Li-Xin</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Fan, Rui</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><creatorcontrib>Hu, Zi-Yu</creatorcontrib><title>A Hybrid Multiobjective Particle Swarm Optimization Algorithm Based on R2 Indicator</title><title>IEEE access</title><addtitle>Access</addtitle><description>When dealing with complex multiobjective problems, particle swarm optimization algorithm is easy to fall into local optimum and lead to uneven distribution. Therefore, this paper presents a hybrid multiobjective particle swarm optimization algorithm based on R2 indicator (R2HMOPSO) for solving multiobjective optimization problem. The proposed algorithm uses the sigmoid function mapping method to adjust the inertia weight and learning factors in order to tradeoffs the exploration and exploitation process effectively. In addition, simulation binary crossover operator is designed to reinitialize the particles to improve the search capability of the algorithm and to prevent particles from falling into local optimum and premature convergence. R2 indicator is incorporated into the R2HMOPSO algorithm so as to deal with the solutions of uneven distribution on the true Pareto front. Besides, polynomial mutation is used to maintain diversity in the external archive. The improved algorithm is evaluated on standard benchmarks. By comparing it with four state-of-the-art multiobjective optimization algorithms, the simulation results show that R2HMOPSO algorithm is competitive and effective in terms of convergence and distribution.</description><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Convergence</subject><subject>Crossovers</subject><subject>decomposition method</subject><subject>Multiobjective optimization problem</subject><subject>Multiple objective analysis</subject><subject>Mutation</subject><subject>Optimization algorithms</subject><subject>Pareto optimization</subject><subject>particle swarm algorithm</subject><subject>Particle swarm optimization</subject><subject>Polynomials</subject><subject>R2 indicator</subject><subject>Sociology</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIVNAv6MUS5xS_EtvHUBVaqaiIwtly_CiOmro4Kah8PSmpKvayq9HM7K4mSUYIjhGC4r6YTKar1RhDxMeYI8wgukgGGOUiJRnJL__N18mwaSrYFe-gjA2SVQFmhzJ6A573m9aHsrK69V8WvKjYer2xYPWtYg2Wu9bX_kd1lC0oNusQfftRgwfVWAM66BWD-dZ4rdoQb5MrpzaNHZ76TfL-OH2bzNLF8mk-KRapppC3KTcZM9wxbCl31glNjBElpCrDDENtS6yFowRjVWaCEUsJzAVlWEPnCCwtuUnmva8JqpK76GsVDzIoL_-AENfy9IQUBDljNM-ZQtRgppx2SuVEGawZpLTzuuu9djF87m3Tyirs47Y7X2KaZQLlUIiORXqWjqFponXnrQjKYxiyD0Mew5CnMDrVqFd5a-1ZwQniGaPkFxFPhTc</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Wei, Li-Xin</creator><creator>Li, Xin</creator><creator>Fan, Rui</creator><creator>Sun, Hao</creator><creator>Hu, Zi-Yu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0342-6547</orcidid></search><sort><creationdate>20180101</creationdate><title>A Hybrid Multiobjective Particle Swarm Optimization Algorithm Based on R2 Indicator</title><author>Wei, Li-Xin ; Li, Xin ; Fan, Rui ; Sun, Hao ; Hu, Zi-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8d57d8f72e48fef9c3dd9b04a52720ceb2c9f4322ab5973e43069472c0ff30be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Convergence</topic><topic>Crossovers</topic><topic>decomposition method</topic><topic>Multiobjective optimization problem</topic><topic>Multiple objective analysis</topic><topic>Mutation</topic><topic>Optimization algorithms</topic><topic>Pareto optimization</topic><topic>particle swarm algorithm</topic><topic>Particle swarm optimization</topic><topic>Polynomials</topic><topic>R2 indicator</topic><topic>Sociology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Li-Xin</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Fan, Rui</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><creatorcontrib>Hu, Zi-Yu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Li-Xin</au><au>Li, Xin</au><au>Fan, Rui</au><au>Sun, Hao</au><au>Hu, Zi-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Multiobjective Particle Swarm Optimization Algorithm Based on R2 Indicator</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>14710</spage><epage>14721</epage><pages>14710-14721</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>When dealing with complex multiobjective problems, particle swarm optimization algorithm is easy to fall into local optimum and lead to uneven distribution. Therefore, this paper presents a hybrid multiobjective particle swarm optimization algorithm based on R2 indicator (R2HMOPSO) for solving multiobjective optimization problem. The proposed algorithm uses the sigmoid function mapping method to adjust the inertia weight and learning factors in order to tradeoffs the exploration and exploitation process effectively. In addition, simulation binary crossover operator is designed to reinitialize the particles to improve the search capability of the algorithm and to prevent particles from falling into local optimum and premature convergence. R2 indicator is incorporated into the R2HMOPSO algorithm so as to deal with the solutions of uneven distribution on the true Pareto front. Besides, polynomial mutation is used to maintain diversity in the external archive. The improved algorithm is evaluated on standard benchmarks. By comparing it with four state-of-the-art multiobjective optimization algorithms, the simulation results show that R2HMOPSO algorithm is competitive and effective in terms of convergence and distribution.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2812701</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0342-6547</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018-01, Vol.6, p.14710-14721
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8318574
source IEEE Xplore Open Access Journals
subjects Algorithms
Approximation algorithms
Convergence
Crossovers
decomposition method
Multiobjective optimization problem
Multiple objective analysis
Mutation
Optimization algorithms
Pareto optimization
particle swarm algorithm
Particle swarm optimization
Polynomials
R2 indicator
Sociology
title A Hybrid Multiobjective Particle Swarm Optimization Algorithm Based on R2 Indicator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A12%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Multiobjective%20Particle%20Swarm%20Optimization%20Algorithm%20Based%20on%20R2%20Indicator&rft.jtitle=IEEE%20access&rft.au=Wei,%20Li-Xin&rft.date=2018-01-01&rft.volume=6&rft.spage=14710&rft.epage=14721&rft.pages=14710-14721&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2812701&rft_dat=%3Cproquest_ieee_%3E2455916099%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-8d57d8f72e48fef9c3dd9b04a52720ceb2c9f4322ab5973e43069472c0ff30be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455916099&rft_id=info:pmid/&rft_ieee_id=8318574&rfr_iscdi=true