Loading…
Distributed power control and spreading gain allocation in CDMA data networks
We study the radio resource allocation problem of distributed joint transmission power control and spreading gain allocation in a DS-CDMA mobile data network. The network consists of K base stations and M wireless data users. The data streams generated by the users are treated as best-effort traffic...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the radio resource allocation problem of distributed joint transmission power control and spreading gain allocation in a DS-CDMA mobile data network. The network consists of K base stations and M wireless data users. The data streams generated by the users are treated as best-effort traffic, in the sense that there are no pre-specified constraints on the quality of the radio channels. We are interested in designing a distributed algorithm that achieves maximal (or near-maximal in some reasonable sense) aggregate throughput, subject to peak power constraints. We provide an algorithm where base stations coordinate in a distributed fashion to control the powers and spreading gains of the users, and show that it converges to a Nash equilibrium point. In general, there may be multiple equilibrium points; however, certain structural properties of the throughput expression can be exploited to significantly trim the search space and induce an ordering on the users in each cell. The numerical results indicate that with these modifications, the algorithm frequently converges in just a few iterations to the throughput maximizing (globally optimal) power and spreading gain allocation. |
---|---|
ISSN: | 0743-166X 2641-9874 |
DOI: | 10.1109/INFCOM.2000.832210 |