Loading…

Smartphone as unobtrusive sensor for real-time sleep recognition

Sleep is fundamental to health, performance and well-being. Studies demonstrate that, in some countries, sleep disorders are reaching epidemic levels. For this reason, automatic sleep recognition systems can be helpful, on the one hand, to foster self awareness of own habits and, on the other, to im...

Full description

Saved in:
Bibliographic Details
Main Authors: Montanini, Laura, Sabino, Nicola, Spinsante, Susanna, Gambi, Ennio
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Montanini, Laura
Sabino, Nicola
Spinsante, Susanna
Gambi, Ennio
description Sleep is fundamental to health, performance and well-being. Studies demonstrate that, in some countries, sleep disorders are reaching epidemic levels. For this reason, automatic sleep recognition systems can be helpful, on the one hand, to foster self awareness of own habits and, on the other, to implement environment management policies to encourage sleep. In this context, we propose an unobtrusive smartphone application which relies on contextual and usage information to infer sleep habits in real-time. We test selected features using kNearest Neighbors, Decision Tree, Random Forest, and Support Vector Machine classifiers. Moreover, we exploit a 1st-order Markov Chain to improve the algorithm's performance. Experimental results demonstrate the effectiveness of the proposed approach, achieving acceptable results in term of Precision, Recall, and F1-score.
doi_str_mv 10.1109/ICCE.2018.8326220
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8326220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8326220</ieee_id><sourcerecordid>8326220</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-b5158029ba6d913572280fe1a916588913705d7a5ed37989779aab64659e4c773</originalsourceid><addsrcrecordid>eNotT8tOwzAQNEhIlNIPQFzyAw5rO37sDRSVUqkSB3qvnGYDRqkTxSkSf48lehjNzhxmdhh7EFAKAfi0ret1KUG40ilppIQrtkLrhFbOKJAar9lCCu14BSBu2V1K3_lA1Lhgzx8nP83j1xCp8Kk4x6GZp3MKP1QkimmYii5jIt_zOZyy2RONWR-HzxjmMMR7dtP5PtHqwku2f13v6ze-e99s65cdDwgzb3TuB4mNNy0Kpa2UDjoSHoXRzmXLgm6t19Qqiw6tRe8bUxmNVB2tVUv2-B8biOgwTiG__Xu47FV_m85IgA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Smartphone as unobtrusive sensor for real-time sleep recognition</title><source>IEEE Xplore All Conference Series</source><creator>Montanini, Laura ; Sabino, Nicola ; Spinsante, Susanna ; Gambi, Ennio</creator><creatorcontrib>Montanini, Laura ; Sabino, Nicola ; Spinsante, Susanna ; Gambi, Ennio</creatorcontrib><description>Sleep is fundamental to health, performance and well-being. Studies demonstrate that, in some countries, sleep disorders are reaching epidemic levels. For this reason, automatic sleep recognition systems can be helpful, on the one hand, to foster self awareness of own habits and, on the other, to implement environment management policies to encourage sleep. In this context, we propose an unobtrusive smartphone application which relies on contextual and usage information to infer sleep habits in real-time. We test selected features using kNearest Neighbors, Decision Tree, Random Forest, and Support Vector Machine classifiers. Moreover, we exploit a 1st-order Markov Chain to improve the algorithm's performance. Experimental results demonstrate the effectiveness of the proposed approach, achieving acceptable results in term of Precision, Recall, and F1-score.</description><identifier>EISSN: 2158-4001</identifier><identifier>EISBN: 9781538630259</identifier><identifier>EISBN: 1538630257</identifier><identifier>DOI: 10.1109/ICCE.2018.8326220</identifier><language>eng</language><publisher>IEEE</publisher><subject>activity recognition ; Batteries ; Error correction ; Mobile application ; Monitoring ; Radio frequency ; Real-time systems ; sleep monitoring ; smartphone sensing ; Support vector machines ; Training</subject><ispartof>2018 IEEE International Conference on Consumer Electronics (ICCE), 2018, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8326220$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8326220$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Montanini, Laura</creatorcontrib><creatorcontrib>Sabino, Nicola</creatorcontrib><creatorcontrib>Spinsante, Susanna</creatorcontrib><creatorcontrib>Gambi, Ennio</creatorcontrib><title>Smartphone as unobtrusive sensor for real-time sleep recognition</title><title>2018 IEEE International Conference on Consumer Electronics (ICCE)</title><addtitle>ICCE</addtitle><description>Sleep is fundamental to health, performance and well-being. Studies demonstrate that, in some countries, sleep disorders are reaching epidemic levels. For this reason, automatic sleep recognition systems can be helpful, on the one hand, to foster self awareness of own habits and, on the other, to implement environment management policies to encourage sleep. In this context, we propose an unobtrusive smartphone application which relies on contextual and usage information to infer sleep habits in real-time. We test selected features using kNearest Neighbors, Decision Tree, Random Forest, and Support Vector Machine classifiers. Moreover, we exploit a 1st-order Markov Chain to improve the algorithm's performance. Experimental results demonstrate the effectiveness of the proposed approach, achieving acceptable results in term of Precision, Recall, and F1-score.</description><subject>activity recognition</subject><subject>Batteries</subject><subject>Error correction</subject><subject>Mobile application</subject><subject>Monitoring</subject><subject>Radio frequency</subject><subject>Real-time systems</subject><subject>sleep monitoring</subject><subject>smartphone sensing</subject><subject>Support vector machines</subject><subject>Training</subject><issn>2158-4001</issn><isbn>9781538630259</isbn><isbn>1538630257</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT8tOwzAQNEhIlNIPQFzyAw5rO37sDRSVUqkSB3qvnGYDRqkTxSkSf48lehjNzhxmdhh7EFAKAfi0ret1KUG40ilppIQrtkLrhFbOKJAar9lCCu14BSBu2V1K3_lA1Lhgzx8nP83j1xCp8Kk4x6GZp3MKP1QkimmYii5jIt_zOZyy2RONWR-HzxjmMMR7dtP5PtHqwku2f13v6ze-e99s65cdDwgzb3TuB4mNNy0Kpa2UDjoSHoXRzmXLgm6t19Qqiw6tRe8bUxmNVB2tVUv2-B8biOgwTiG__Xu47FV_m85IgA</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Montanini, Laura</creator><creator>Sabino, Nicola</creator><creator>Spinsante, Susanna</creator><creator>Gambi, Ennio</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201801</creationdate><title>Smartphone as unobtrusive sensor for real-time sleep recognition</title><author>Montanini, Laura ; Sabino, Nicola ; Spinsante, Susanna ; Gambi, Ennio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-b5158029ba6d913572280fe1a916588913705d7a5ed37989779aab64659e4c773</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>activity recognition</topic><topic>Batteries</topic><topic>Error correction</topic><topic>Mobile application</topic><topic>Monitoring</topic><topic>Radio frequency</topic><topic>Real-time systems</topic><topic>sleep monitoring</topic><topic>smartphone sensing</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Montanini, Laura</creatorcontrib><creatorcontrib>Sabino, Nicola</creatorcontrib><creatorcontrib>Spinsante, Susanna</creatorcontrib><creatorcontrib>Gambi, Ennio</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Montanini, Laura</au><au>Sabino, Nicola</au><au>Spinsante, Susanna</au><au>Gambi, Ennio</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Smartphone as unobtrusive sensor for real-time sleep recognition</atitle><btitle>2018 IEEE International Conference on Consumer Electronics (ICCE)</btitle><stitle>ICCE</stitle><date>2018-01</date><risdate>2018</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2158-4001</eissn><eisbn>9781538630259</eisbn><eisbn>1538630257</eisbn><abstract>Sleep is fundamental to health, performance and well-being. Studies demonstrate that, in some countries, sleep disorders are reaching epidemic levels. For this reason, automatic sleep recognition systems can be helpful, on the one hand, to foster self awareness of own habits and, on the other, to implement environment management policies to encourage sleep. In this context, we propose an unobtrusive smartphone application which relies on contextual and usage information to infer sleep habits in real-time. We test selected features using kNearest Neighbors, Decision Tree, Random Forest, and Support Vector Machine classifiers. Moreover, we exploit a 1st-order Markov Chain to improve the algorithm's performance. Experimental results demonstrate the effectiveness of the proposed approach, achieving acceptable results in term of Precision, Recall, and F1-score.</abstract><pub>IEEE</pub><doi>10.1109/ICCE.2018.8326220</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2158-4001
ispartof 2018 IEEE International Conference on Consumer Electronics (ICCE), 2018, p.1-4
issn 2158-4001
language eng
recordid cdi_ieee_primary_8326220
source IEEE Xplore All Conference Series
subjects activity recognition
Batteries
Error correction
Mobile application
Monitoring
Radio frequency
Real-time systems
sleep monitoring
smartphone sensing
Support vector machines
Training
title Smartphone as unobtrusive sensor for real-time sleep recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A19%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Smartphone%20as%20unobtrusive%20sensor%20for%20real-time%20sleep%20recognition&rft.btitle=2018%20IEEE%20International%20Conference%20on%20Consumer%20Electronics%20(ICCE)&rft.au=Montanini,%20Laura&rft.date=2018-01&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2158-4001&rft_id=info:doi/10.1109/ICCE.2018.8326220&rft.eisbn=9781538630259&rft.eisbn_list=1538630257&rft_dat=%3Cieee_CHZPO%3E8326220%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-b5158029ba6d913572280fe1a916588913705d7a5ed37989779aab64659e4c773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8326220&rfr_iscdi=true