Loading…
Smartphone as unobtrusive sensor for real-time sleep recognition
Sleep is fundamental to health, performance and well-being. Studies demonstrate that, in some countries, sleep disorders are reaching epidemic levels. For this reason, automatic sleep recognition systems can be helpful, on the one hand, to foster self awareness of own habits and, on the other, to im...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Montanini, Laura Sabino, Nicola Spinsante, Susanna Gambi, Ennio |
description | Sleep is fundamental to health, performance and well-being. Studies demonstrate that, in some countries, sleep disorders are reaching epidemic levels. For this reason, automatic sleep recognition systems can be helpful, on the one hand, to foster self awareness of own habits and, on the other, to implement environment management policies to encourage sleep. In this context, we propose an unobtrusive smartphone application which relies on contextual and usage information to infer sleep habits in real-time. We test selected features using kNearest Neighbors, Decision Tree, Random Forest, and Support Vector Machine classifiers. Moreover, we exploit a 1st-order Markov Chain to improve the algorithm's performance. Experimental results demonstrate the effectiveness of the proposed approach, achieving acceptable results in term of Precision, Recall, and F1-score. |
doi_str_mv | 10.1109/ICCE.2018.8326220 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8326220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8326220</ieee_id><sourcerecordid>8326220</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-b5158029ba6d913572280fe1a916588913705d7a5ed37989779aab64659e4c773</originalsourceid><addsrcrecordid>eNotT8tOwzAQNEhIlNIPQFzyAw5rO37sDRSVUqkSB3qvnGYDRqkTxSkSf48lehjNzhxmdhh7EFAKAfi0ret1KUG40ilppIQrtkLrhFbOKJAar9lCCu14BSBu2V1K3_lA1Lhgzx8nP83j1xCp8Kk4x6GZp3MKP1QkimmYii5jIt_zOZyy2RONWR-HzxjmMMR7dtP5PtHqwku2f13v6ze-e99s65cdDwgzb3TuB4mNNy0Kpa2UDjoSHoXRzmXLgm6t19Qqiw6tRe8bUxmNVB2tVUv2-B8biOgwTiG__Xu47FV_m85IgA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Smartphone as unobtrusive sensor for real-time sleep recognition</title><source>IEEE Xplore All Conference Series</source><creator>Montanini, Laura ; Sabino, Nicola ; Spinsante, Susanna ; Gambi, Ennio</creator><creatorcontrib>Montanini, Laura ; Sabino, Nicola ; Spinsante, Susanna ; Gambi, Ennio</creatorcontrib><description>Sleep is fundamental to health, performance and well-being. Studies demonstrate that, in some countries, sleep disorders are reaching epidemic levels. For this reason, automatic sleep recognition systems can be helpful, on the one hand, to foster self awareness of own habits and, on the other, to implement environment management policies to encourage sleep. In this context, we propose an unobtrusive smartphone application which relies on contextual and usage information to infer sleep habits in real-time. We test selected features using kNearest Neighbors, Decision Tree, Random Forest, and Support Vector Machine classifiers. Moreover, we exploit a 1st-order Markov Chain to improve the algorithm's performance. Experimental results demonstrate the effectiveness of the proposed approach, achieving acceptable results in term of Precision, Recall, and F1-score.</description><identifier>EISSN: 2158-4001</identifier><identifier>EISBN: 9781538630259</identifier><identifier>EISBN: 1538630257</identifier><identifier>DOI: 10.1109/ICCE.2018.8326220</identifier><language>eng</language><publisher>IEEE</publisher><subject>activity recognition ; Batteries ; Error correction ; Mobile application ; Monitoring ; Radio frequency ; Real-time systems ; sleep monitoring ; smartphone sensing ; Support vector machines ; Training</subject><ispartof>2018 IEEE International Conference on Consumer Electronics (ICCE), 2018, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8326220$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8326220$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Montanini, Laura</creatorcontrib><creatorcontrib>Sabino, Nicola</creatorcontrib><creatorcontrib>Spinsante, Susanna</creatorcontrib><creatorcontrib>Gambi, Ennio</creatorcontrib><title>Smartphone as unobtrusive sensor for real-time sleep recognition</title><title>2018 IEEE International Conference on Consumer Electronics (ICCE)</title><addtitle>ICCE</addtitle><description>Sleep is fundamental to health, performance and well-being. Studies demonstrate that, in some countries, sleep disorders are reaching epidemic levels. For this reason, automatic sleep recognition systems can be helpful, on the one hand, to foster self awareness of own habits and, on the other, to implement environment management policies to encourage sleep. In this context, we propose an unobtrusive smartphone application which relies on contextual and usage information to infer sleep habits in real-time. We test selected features using kNearest Neighbors, Decision Tree, Random Forest, and Support Vector Machine classifiers. Moreover, we exploit a 1st-order Markov Chain to improve the algorithm's performance. Experimental results demonstrate the effectiveness of the proposed approach, achieving acceptable results in term of Precision, Recall, and F1-score.</description><subject>activity recognition</subject><subject>Batteries</subject><subject>Error correction</subject><subject>Mobile application</subject><subject>Monitoring</subject><subject>Radio frequency</subject><subject>Real-time systems</subject><subject>sleep monitoring</subject><subject>smartphone sensing</subject><subject>Support vector machines</subject><subject>Training</subject><issn>2158-4001</issn><isbn>9781538630259</isbn><isbn>1538630257</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT8tOwzAQNEhIlNIPQFzyAw5rO37sDRSVUqkSB3qvnGYDRqkTxSkSf48lehjNzhxmdhh7EFAKAfi0ret1KUG40ilppIQrtkLrhFbOKJAar9lCCu14BSBu2V1K3_lA1Lhgzx8nP83j1xCp8Kk4x6GZp3MKP1QkimmYii5jIt_zOZyy2RONWR-HzxjmMMR7dtP5PtHqwku2f13v6ze-e99s65cdDwgzb3TuB4mNNy0Kpa2UDjoSHoXRzmXLgm6t19Qqiw6tRe8bUxmNVB2tVUv2-B8biOgwTiG__Xu47FV_m85IgA</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Montanini, Laura</creator><creator>Sabino, Nicola</creator><creator>Spinsante, Susanna</creator><creator>Gambi, Ennio</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201801</creationdate><title>Smartphone as unobtrusive sensor for real-time sleep recognition</title><author>Montanini, Laura ; Sabino, Nicola ; Spinsante, Susanna ; Gambi, Ennio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-b5158029ba6d913572280fe1a916588913705d7a5ed37989779aab64659e4c773</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>activity recognition</topic><topic>Batteries</topic><topic>Error correction</topic><topic>Mobile application</topic><topic>Monitoring</topic><topic>Radio frequency</topic><topic>Real-time systems</topic><topic>sleep monitoring</topic><topic>smartphone sensing</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Montanini, Laura</creatorcontrib><creatorcontrib>Sabino, Nicola</creatorcontrib><creatorcontrib>Spinsante, Susanna</creatorcontrib><creatorcontrib>Gambi, Ennio</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Montanini, Laura</au><au>Sabino, Nicola</au><au>Spinsante, Susanna</au><au>Gambi, Ennio</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Smartphone as unobtrusive sensor for real-time sleep recognition</atitle><btitle>2018 IEEE International Conference on Consumer Electronics (ICCE)</btitle><stitle>ICCE</stitle><date>2018-01</date><risdate>2018</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2158-4001</eissn><eisbn>9781538630259</eisbn><eisbn>1538630257</eisbn><abstract>Sleep is fundamental to health, performance and well-being. Studies demonstrate that, in some countries, sleep disorders are reaching epidemic levels. For this reason, automatic sleep recognition systems can be helpful, on the one hand, to foster self awareness of own habits and, on the other, to implement environment management policies to encourage sleep. In this context, we propose an unobtrusive smartphone application which relies on contextual and usage information to infer sleep habits in real-time. We test selected features using kNearest Neighbors, Decision Tree, Random Forest, and Support Vector Machine classifiers. Moreover, we exploit a 1st-order Markov Chain to improve the algorithm's performance. Experimental results demonstrate the effectiveness of the proposed approach, achieving acceptable results in term of Precision, Recall, and F1-score.</abstract><pub>IEEE</pub><doi>10.1109/ICCE.2018.8326220</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2158-4001 |
ispartof | 2018 IEEE International Conference on Consumer Electronics (ICCE), 2018, p.1-4 |
issn | 2158-4001 |
language | eng |
recordid | cdi_ieee_primary_8326220 |
source | IEEE Xplore All Conference Series |
subjects | activity recognition Batteries Error correction Mobile application Monitoring Radio frequency Real-time systems sleep monitoring smartphone sensing Support vector machines Training |
title | Smartphone as unobtrusive sensor for real-time sleep recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A19%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Smartphone%20as%20unobtrusive%20sensor%20for%20real-time%20sleep%20recognition&rft.btitle=2018%20IEEE%20International%20Conference%20on%20Consumer%20Electronics%20(ICCE)&rft.au=Montanini,%20Laura&rft.date=2018-01&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2158-4001&rft_id=info:doi/10.1109/ICCE.2018.8326220&rft.eisbn=9781538630259&rft.eisbn_list=1538630257&rft_dat=%3Cieee_CHZPO%3E8326220%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-b5158029ba6d913572280fe1a916588913705d7a5ed37989779aab64659e4c773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8326220&rfr_iscdi=true |