Loading…
Statistical Properties of Double Hoyt Fading With Applications to the Performance Analysis of Wireless Communication Systems
In this paper, we investigate the statistical properties of double Hoyt fading channels, where the overall received signal is determined by the product of two statistically independent but not necessarily identically distributed single Hoyt processes. Finite-range integral expressions are first deri...
Saved in:
Published in: | IEEE access 2018-01, Vol.6, p.19597-19609 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-96b93119ea9c2e602c3e5a603d99202f7496a2cd5af3ce426d4d3e17936b9e153 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-96b93119ea9c2e602c3e5a603d99202f7496a2cd5af3ce426d4d3e17936b9e153 |
container_end_page | 19609 |
container_issue | |
container_start_page | 19597 |
container_title | IEEE access |
container_volume | 6 |
creator | Hajri, Nazih Youssef, Neji Kawabata, Tsutomu Patzold, Matthias Dahech, Wiem |
description | In this paper, we investigate the statistical properties of double Hoyt fading channels, where the overall received signal is determined by the product of two statistically independent but not necessarily identically distributed single Hoyt processes. Finite-range integral expressions are first derived for the probability density function (PDF), cumulative distribution function (CDF), level-crossing rate (LCR), and average duration of fades of the envelope fading process. A closed-form approximate solution is also deduced for the LCR by making use of the Laplace approximation theorem. Applying the derived PDF of the double Hoyt channel, we then provide analytical expressions for the average symbol error probability of both coherent M-ary phase-shift keying and square M-ary quadrature amplitude modulation schemes. It is shown that all the obtained theoretical results include those that are already known for double Rayleigh channels as a special case. In addition, simplified expressions for the Hoyt \times Rayleigh, Rayleigh \times one-sided Gaussian, and double one-sided Gaussian channels are presented. Moreover, the applicableness of the proposed model to measured real-world propagation channels is examined and discussed by comparing the derived CDF and LCR with published measurement data collected in inter-vehicular propagation environments. Numerical and simulation results are also provided to confirm the validity of the derivations. |
doi_str_mv | 10.1109/ACCESS.2018.2820746 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8332944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8332944</ieee_id><doaj_id>oai_doaj_org_article_24aec1d9301f4eb490455306fce20551</doaj_id><sourcerecordid>2455930031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-96b93119ea9c2e602c3e5a603d99202f7496a2cd5af3ce426d4d3e17936b9e153</originalsourceid><addsrcrecordid>eNpNkU1LAzEQhhdRUNRf4CXguTXf3RzL-lFBUKjSY0izs5qyu1mT9FDwx5t2iziXGYb3eYfhLYobgqeEYHU3r6qH5XJKMSmntKR4xuVJcUGJVBMmmDz9N58X1zFucK4yr8TsovhZJpNcTM6aFr0FP0BIDiLyDbr323ULaOF3CT2a2vWfaOXSF5oPQ5vlyfk-ouRR-gL0BqHxoTO9BTTvTbuL7uCxcgFaiBFVvuu2_RFDy11M0MWr4qwxbYTrY78sPh4f3qvF5OX16bmav0wsx2WaKLlWjBAFRlkKElPLQBiJWa0UxbSZcSUNtbUwDbPAqax5zYDMFMsgEMEui-fRt_Zmo4fgOhN22hunDwsfPrXJb9sWNOUGLKkVw6ThsOYKcyEYlo0FioUg2et29BqC_95CTHrjtyG_HDMrRAYx26vYqLLBxxig-btKsN6npsfU9D41fUwtUzcj5QDgjygZo4pz9guZf5Pa</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455930031</pqid></control><display><type>article</type><title>Statistical Properties of Double Hoyt Fading With Applications to the Performance Analysis of Wireless Communication Systems</title><source>IEEE Xplore Open Access Journals</source><creator>Hajri, Nazih ; Youssef, Neji ; Kawabata, Tsutomu ; Patzold, Matthias ; Dahech, Wiem</creator><creatorcontrib>Hajri, Nazih ; Youssef, Neji ; Kawabata, Tsutomu ; Patzold, Matthias ; Dahech, Wiem</creatorcontrib><description><![CDATA[In this paper, we investigate the statistical properties of double Hoyt fading channels, where the overall received signal is determined by the product of two statistically independent but not necessarily identically distributed single Hoyt processes. Finite-range integral expressions are first derived for the probability density function (PDF), cumulative distribution function (CDF), level-crossing rate (LCR), and average duration of fades of the envelope fading process. A closed-form approximate solution is also deduced for the LCR by making use of the Laplace approximation theorem. Applying the derived PDF of the double Hoyt channel, we then provide analytical expressions for the average symbol error probability of both coherent M-ary phase-shift keying and square M-ary quadrature amplitude modulation schemes. It is shown that all the obtained theoretical results include those that are already known for double Rayleigh channels as a special case. In addition, simplified expressions for the Hoyt<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>Rayleigh, Rayleigh<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>one-sided Gaussian, and double one-sided Gaussian channels are presented. Moreover, the applicableness of the proposed model to measured real-world propagation channels is examined and discussed by comparing the derived CDF and LCR with published measurement data collected in inter-vehicular propagation environments. Numerical and simulation results are also provided to confirm the validity of the derivations.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2820746</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; average duration of fades (ADF) ; Channels ; Codes ; cumulative distribution function (CDF) ; Distribution functions ; Double Hoyt fading channel model ; Exact solutions ; Fading ; Gaussian processes ; level-crossing rate (LCR) ; Mathematical analysis ; Performance analysis ; Phase shift keying ; Probability density function ; probability density function (PDF) ; Probability density functions ; Propagation ; Quadrature amplitude modulation ; Rayleigh channels ; Statistical analysis ; symbol error probability (SEP) ; vehicular-to-vehicular (V2V) channels ; Wireless communication ; Wireless communication systems ; Wireless communications</subject><ispartof>IEEE access, 2018-01, Vol.6, p.19597-19609</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-96b93119ea9c2e602c3e5a603d99202f7496a2cd5af3ce426d4d3e17936b9e153</citedby><cites>FETCH-LOGICAL-c408t-96b93119ea9c2e602c3e5a603d99202f7496a2cd5af3ce426d4d3e17936b9e153</cites><orcidid>0000-0003-1675-1741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8332944$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Hajri, Nazih</creatorcontrib><creatorcontrib>Youssef, Neji</creatorcontrib><creatorcontrib>Kawabata, Tsutomu</creatorcontrib><creatorcontrib>Patzold, Matthias</creatorcontrib><creatorcontrib>Dahech, Wiem</creatorcontrib><title>Statistical Properties of Double Hoyt Fading With Applications to the Performance Analysis of Wireless Communication Systems</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[In this paper, we investigate the statistical properties of double Hoyt fading channels, where the overall received signal is determined by the product of two statistically independent but not necessarily identically distributed single Hoyt processes. Finite-range integral expressions are first derived for the probability density function (PDF), cumulative distribution function (CDF), level-crossing rate (LCR), and average duration of fades of the envelope fading process. A closed-form approximate solution is also deduced for the LCR by making use of the Laplace approximation theorem. Applying the derived PDF of the double Hoyt channel, we then provide analytical expressions for the average symbol error probability of both coherent M-ary phase-shift keying and square M-ary quadrature amplitude modulation schemes. It is shown that all the obtained theoretical results include those that are already known for double Rayleigh channels as a special case. In addition, simplified expressions for the Hoyt<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>Rayleigh, Rayleigh<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>one-sided Gaussian, and double one-sided Gaussian channels are presented. Moreover, the applicableness of the proposed model to measured real-world propagation channels is examined and discussed by comparing the derived CDF and LCR with published measurement data collected in inter-vehicular propagation environments. Numerical and simulation results are also provided to confirm the validity of the derivations.]]></description><subject>Analytical models</subject><subject>average duration of fades (ADF)</subject><subject>Channels</subject><subject>Codes</subject><subject>cumulative distribution function (CDF)</subject><subject>Distribution functions</subject><subject>Double Hoyt fading channel model</subject><subject>Exact solutions</subject><subject>Fading</subject><subject>Gaussian processes</subject><subject>level-crossing rate (LCR)</subject><subject>Mathematical analysis</subject><subject>Performance analysis</subject><subject>Phase shift keying</subject><subject>Probability density function</subject><subject>probability density function (PDF)</subject><subject>Probability density functions</subject><subject>Propagation</subject><subject>Quadrature amplitude modulation</subject><subject>Rayleigh channels</subject><subject>Statistical analysis</subject><subject>symbol error probability (SEP)</subject><subject>vehicular-to-vehicular (V2V) channels</subject><subject>Wireless communication</subject><subject>Wireless communication systems</subject><subject>Wireless communications</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1LAzEQhhdRUNRf4CXguTXf3RzL-lFBUKjSY0izs5qyu1mT9FDwx5t2iziXGYb3eYfhLYobgqeEYHU3r6qH5XJKMSmntKR4xuVJcUGJVBMmmDz9N58X1zFucK4yr8TsovhZJpNcTM6aFr0FP0BIDiLyDbr323ULaOF3CT2a2vWfaOXSF5oPQ5vlyfk-ouRR-gL0BqHxoTO9BTTvTbuL7uCxcgFaiBFVvuu2_RFDy11M0MWr4qwxbYTrY78sPh4f3qvF5OX16bmav0wsx2WaKLlWjBAFRlkKElPLQBiJWa0UxbSZcSUNtbUwDbPAqax5zYDMFMsgEMEui-fRt_Zmo4fgOhN22hunDwsfPrXJb9sWNOUGLKkVw6ThsOYKcyEYlo0FioUg2et29BqC_95CTHrjtyG_HDMrRAYx26vYqLLBxxig-btKsN6npsfU9D41fUwtUzcj5QDgjygZo4pz9guZf5Pa</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Hajri, Nazih</creator><creator>Youssef, Neji</creator><creator>Kawabata, Tsutomu</creator><creator>Patzold, Matthias</creator><creator>Dahech, Wiem</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1675-1741</orcidid></search><sort><creationdate>20180101</creationdate><title>Statistical Properties of Double Hoyt Fading With Applications to the Performance Analysis of Wireless Communication Systems</title><author>Hajri, Nazih ; Youssef, Neji ; Kawabata, Tsutomu ; Patzold, Matthias ; Dahech, Wiem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-96b93119ea9c2e602c3e5a603d99202f7496a2cd5af3ce426d4d3e17936b9e153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical models</topic><topic>average duration of fades (ADF)</topic><topic>Channels</topic><topic>Codes</topic><topic>cumulative distribution function (CDF)</topic><topic>Distribution functions</topic><topic>Double Hoyt fading channel model</topic><topic>Exact solutions</topic><topic>Fading</topic><topic>Gaussian processes</topic><topic>level-crossing rate (LCR)</topic><topic>Mathematical analysis</topic><topic>Performance analysis</topic><topic>Phase shift keying</topic><topic>Probability density function</topic><topic>probability density function (PDF)</topic><topic>Probability density functions</topic><topic>Propagation</topic><topic>Quadrature amplitude modulation</topic><topic>Rayleigh channels</topic><topic>Statistical analysis</topic><topic>symbol error probability (SEP)</topic><topic>vehicular-to-vehicular (V2V) channels</topic><topic>Wireless communication</topic><topic>Wireless communication systems</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hajri, Nazih</creatorcontrib><creatorcontrib>Youssef, Neji</creatorcontrib><creatorcontrib>Kawabata, Tsutomu</creatorcontrib><creatorcontrib>Patzold, Matthias</creatorcontrib><creatorcontrib>Dahech, Wiem</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hajri, Nazih</au><au>Youssef, Neji</au><au>Kawabata, Tsutomu</au><au>Patzold, Matthias</au><au>Dahech, Wiem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Properties of Double Hoyt Fading With Applications to the Performance Analysis of Wireless Communication Systems</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>19597</spage><epage>19609</epage><pages>19597-19609</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[In this paper, we investigate the statistical properties of double Hoyt fading channels, where the overall received signal is determined by the product of two statistically independent but not necessarily identically distributed single Hoyt processes. Finite-range integral expressions are first derived for the probability density function (PDF), cumulative distribution function (CDF), level-crossing rate (LCR), and average duration of fades of the envelope fading process. A closed-form approximate solution is also deduced for the LCR by making use of the Laplace approximation theorem. Applying the derived PDF of the double Hoyt channel, we then provide analytical expressions for the average symbol error probability of both coherent M-ary phase-shift keying and square M-ary quadrature amplitude modulation schemes. It is shown that all the obtained theoretical results include those that are already known for double Rayleigh channels as a special case. In addition, simplified expressions for the Hoyt<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>Rayleigh, Rayleigh<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>one-sided Gaussian, and double one-sided Gaussian channels are presented. Moreover, the applicableness of the proposed model to measured real-world propagation channels is examined and discussed by comparing the derived CDF and LCR with published measurement data collected in inter-vehicular propagation environments. Numerical and simulation results are also provided to confirm the validity of the derivations.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2820746</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1675-1741</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2018-01, Vol.6, p.19597-19609 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8332944 |
source | IEEE Xplore Open Access Journals |
subjects | Analytical models average duration of fades (ADF) Channels Codes cumulative distribution function (CDF) Distribution functions Double Hoyt fading channel model Exact solutions Fading Gaussian processes level-crossing rate (LCR) Mathematical analysis Performance analysis Phase shift keying Probability density function probability density function (PDF) Probability density functions Propagation Quadrature amplitude modulation Rayleigh channels Statistical analysis symbol error probability (SEP) vehicular-to-vehicular (V2V) channels Wireless communication Wireless communication systems Wireless communications |
title | Statistical Properties of Double Hoyt Fading With Applications to the Performance Analysis of Wireless Communication Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A40%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Properties%20of%20Double%20Hoyt%20Fading%20With%20Applications%20to%20the%20Performance%20Analysis%20of%20Wireless%20Communication%20Systems&rft.jtitle=IEEE%20access&rft.au=Hajri,%20Nazih&rft.date=2018-01-01&rft.volume=6&rft.spage=19597&rft.epage=19609&rft.pages=19597-19609&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2820746&rft_dat=%3Cproquest_ieee_%3E2455930031%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-96b93119ea9c2e602c3e5a603d99202f7496a2cd5af3ce426d4d3e17936b9e153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455930031&rft_id=info:pmid/&rft_ieee_id=8332944&rfr_iscdi=true |