Loading…

Statistical Properties of Double Hoyt Fading With Applications to the Performance Analysis of Wireless Communication Systems

In this paper, we investigate the statistical properties of double Hoyt fading channels, where the overall received signal is determined by the product of two statistically independent but not necessarily identically distributed single Hoyt processes. Finite-range integral expressions are first deri...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2018-01, Vol.6, p.19597-19609
Main Authors: Hajri, Nazih, Youssef, Neji, Kawabata, Tsutomu, Patzold, Matthias, Dahech, Wiem
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-96b93119ea9c2e602c3e5a603d99202f7496a2cd5af3ce426d4d3e17936b9e153
cites cdi_FETCH-LOGICAL-c408t-96b93119ea9c2e602c3e5a603d99202f7496a2cd5af3ce426d4d3e17936b9e153
container_end_page 19609
container_issue
container_start_page 19597
container_title IEEE access
container_volume 6
creator Hajri, Nazih
Youssef, Neji
Kawabata, Tsutomu
Patzold, Matthias
Dahech, Wiem
description In this paper, we investigate the statistical properties of double Hoyt fading channels, where the overall received signal is determined by the product of two statistically independent but not necessarily identically distributed single Hoyt processes. Finite-range integral expressions are first derived for the probability density function (PDF), cumulative distribution function (CDF), level-crossing rate (LCR), and average duration of fades of the envelope fading process. A closed-form approximate solution is also deduced for the LCR by making use of the Laplace approximation theorem. Applying the derived PDF of the double Hoyt channel, we then provide analytical expressions for the average symbol error probability of both coherent M-ary phase-shift keying and square M-ary quadrature amplitude modulation schemes. It is shown that all the obtained theoretical results include those that are already known for double Rayleigh channels as a special case. In addition, simplified expressions for the Hoyt \times Rayleigh, Rayleigh \times one-sided Gaussian, and double one-sided Gaussian channels are presented. Moreover, the applicableness of the proposed model to measured real-world propagation channels is examined and discussed by comparing the derived CDF and LCR with published measurement data collected in inter-vehicular propagation environments. Numerical and simulation results are also provided to confirm the validity of the derivations.
doi_str_mv 10.1109/ACCESS.2018.2820746
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8332944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8332944</ieee_id><doaj_id>oai_doaj_org_article_24aec1d9301f4eb490455306fce20551</doaj_id><sourcerecordid>2455930031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-96b93119ea9c2e602c3e5a603d99202f7496a2cd5af3ce426d4d3e17936b9e153</originalsourceid><addsrcrecordid>eNpNkU1LAzEQhhdRUNRf4CXguTXf3RzL-lFBUKjSY0izs5qyu1mT9FDwx5t2iziXGYb3eYfhLYobgqeEYHU3r6qH5XJKMSmntKR4xuVJcUGJVBMmmDz9N58X1zFucK4yr8TsovhZJpNcTM6aFr0FP0BIDiLyDbr323ULaOF3CT2a2vWfaOXSF5oPQ5vlyfk-ouRR-gL0BqHxoTO9BTTvTbuL7uCxcgFaiBFVvuu2_RFDy11M0MWr4qwxbYTrY78sPh4f3qvF5OX16bmav0wsx2WaKLlWjBAFRlkKElPLQBiJWa0UxbSZcSUNtbUwDbPAqax5zYDMFMsgEMEui-fRt_Zmo4fgOhN22hunDwsfPrXJb9sWNOUGLKkVw6ThsOYKcyEYlo0FioUg2et29BqC_95CTHrjtyG_HDMrRAYx26vYqLLBxxig-btKsN6npsfU9D41fUwtUzcj5QDgjygZo4pz9guZf5Pa</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455930031</pqid></control><display><type>article</type><title>Statistical Properties of Double Hoyt Fading With Applications to the Performance Analysis of Wireless Communication Systems</title><source>IEEE Xplore Open Access Journals</source><creator>Hajri, Nazih ; Youssef, Neji ; Kawabata, Tsutomu ; Patzold, Matthias ; Dahech, Wiem</creator><creatorcontrib>Hajri, Nazih ; Youssef, Neji ; Kawabata, Tsutomu ; Patzold, Matthias ; Dahech, Wiem</creatorcontrib><description><![CDATA[In this paper, we investigate the statistical properties of double Hoyt fading channels, where the overall received signal is determined by the product of two statistically independent but not necessarily identically distributed single Hoyt processes. Finite-range integral expressions are first derived for the probability density function (PDF), cumulative distribution function (CDF), level-crossing rate (LCR), and average duration of fades of the envelope fading process. A closed-form approximate solution is also deduced for the LCR by making use of the Laplace approximation theorem. Applying the derived PDF of the double Hoyt channel, we then provide analytical expressions for the average symbol error probability of both coherent M-ary phase-shift keying and square M-ary quadrature amplitude modulation schemes. It is shown that all the obtained theoretical results include those that are already known for double Rayleigh channels as a special case. In addition, simplified expressions for the Hoyt<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>Rayleigh, Rayleigh<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>one-sided Gaussian, and double one-sided Gaussian channels are presented. Moreover, the applicableness of the proposed model to measured real-world propagation channels is examined and discussed by comparing the derived CDF and LCR with published measurement data collected in inter-vehicular propagation environments. Numerical and simulation results are also provided to confirm the validity of the derivations.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2820746</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; average duration of fades (ADF) ; Channels ; Codes ; cumulative distribution function (CDF) ; Distribution functions ; Double Hoyt fading channel model ; Exact solutions ; Fading ; Gaussian processes ; level-crossing rate (LCR) ; Mathematical analysis ; Performance analysis ; Phase shift keying ; Probability density function ; probability density function (PDF) ; Probability density functions ; Propagation ; Quadrature amplitude modulation ; Rayleigh channels ; Statistical analysis ; symbol error probability (SEP) ; vehicular-to-vehicular (V2V) channels ; Wireless communication ; Wireless communication systems ; Wireless communications</subject><ispartof>IEEE access, 2018-01, Vol.6, p.19597-19609</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-96b93119ea9c2e602c3e5a603d99202f7496a2cd5af3ce426d4d3e17936b9e153</citedby><cites>FETCH-LOGICAL-c408t-96b93119ea9c2e602c3e5a603d99202f7496a2cd5af3ce426d4d3e17936b9e153</cites><orcidid>0000-0003-1675-1741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8332944$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Hajri, Nazih</creatorcontrib><creatorcontrib>Youssef, Neji</creatorcontrib><creatorcontrib>Kawabata, Tsutomu</creatorcontrib><creatorcontrib>Patzold, Matthias</creatorcontrib><creatorcontrib>Dahech, Wiem</creatorcontrib><title>Statistical Properties of Double Hoyt Fading With Applications to the Performance Analysis of Wireless Communication Systems</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[In this paper, we investigate the statistical properties of double Hoyt fading channels, where the overall received signal is determined by the product of two statistically independent but not necessarily identically distributed single Hoyt processes. Finite-range integral expressions are first derived for the probability density function (PDF), cumulative distribution function (CDF), level-crossing rate (LCR), and average duration of fades of the envelope fading process. A closed-form approximate solution is also deduced for the LCR by making use of the Laplace approximation theorem. Applying the derived PDF of the double Hoyt channel, we then provide analytical expressions for the average symbol error probability of both coherent M-ary phase-shift keying and square M-ary quadrature amplitude modulation schemes. It is shown that all the obtained theoretical results include those that are already known for double Rayleigh channels as a special case. In addition, simplified expressions for the Hoyt<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>Rayleigh, Rayleigh<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>one-sided Gaussian, and double one-sided Gaussian channels are presented. Moreover, the applicableness of the proposed model to measured real-world propagation channels is examined and discussed by comparing the derived CDF and LCR with published measurement data collected in inter-vehicular propagation environments. Numerical and simulation results are also provided to confirm the validity of the derivations.]]></description><subject>Analytical models</subject><subject>average duration of fades (ADF)</subject><subject>Channels</subject><subject>Codes</subject><subject>cumulative distribution function (CDF)</subject><subject>Distribution functions</subject><subject>Double Hoyt fading channel model</subject><subject>Exact solutions</subject><subject>Fading</subject><subject>Gaussian processes</subject><subject>level-crossing rate (LCR)</subject><subject>Mathematical analysis</subject><subject>Performance analysis</subject><subject>Phase shift keying</subject><subject>Probability density function</subject><subject>probability density function (PDF)</subject><subject>Probability density functions</subject><subject>Propagation</subject><subject>Quadrature amplitude modulation</subject><subject>Rayleigh channels</subject><subject>Statistical analysis</subject><subject>symbol error probability (SEP)</subject><subject>vehicular-to-vehicular (V2V) channels</subject><subject>Wireless communication</subject><subject>Wireless communication systems</subject><subject>Wireless communications</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1LAzEQhhdRUNRf4CXguTXf3RzL-lFBUKjSY0izs5qyu1mT9FDwx5t2iziXGYb3eYfhLYobgqeEYHU3r6qH5XJKMSmntKR4xuVJcUGJVBMmmDz9N58X1zFucK4yr8TsovhZJpNcTM6aFr0FP0BIDiLyDbr323ULaOF3CT2a2vWfaOXSF5oPQ5vlyfk-ouRR-gL0BqHxoTO9BTTvTbuL7uCxcgFaiBFVvuu2_RFDy11M0MWr4qwxbYTrY78sPh4f3qvF5OX16bmav0wsx2WaKLlWjBAFRlkKElPLQBiJWa0UxbSZcSUNtbUwDbPAqax5zYDMFMsgEMEui-fRt_Zmo4fgOhN22hunDwsfPrXJb9sWNOUGLKkVw6ThsOYKcyEYlo0FioUg2et29BqC_95CTHrjtyG_HDMrRAYx26vYqLLBxxig-btKsN6npsfU9D41fUwtUzcj5QDgjygZo4pz9guZf5Pa</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Hajri, Nazih</creator><creator>Youssef, Neji</creator><creator>Kawabata, Tsutomu</creator><creator>Patzold, Matthias</creator><creator>Dahech, Wiem</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1675-1741</orcidid></search><sort><creationdate>20180101</creationdate><title>Statistical Properties of Double Hoyt Fading With Applications to the Performance Analysis of Wireless Communication Systems</title><author>Hajri, Nazih ; Youssef, Neji ; Kawabata, Tsutomu ; Patzold, Matthias ; Dahech, Wiem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-96b93119ea9c2e602c3e5a603d99202f7496a2cd5af3ce426d4d3e17936b9e153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical models</topic><topic>average duration of fades (ADF)</topic><topic>Channels</topic><topic>Codes</topic><topic>cumulative distribution function (CDF)</topic><topic>Distribution functions</topic><topic>Double Hoyt fading channel model</topic><topic>Exact solutions</topic><topic>Fading</topic><topic>Gaussian processes</topic><topic>level-crossing rate (LCR)</topic><topic>Mathematical analysis</topic><topic>Performance analysis</topic><topic>Phase shift keying</topic><topic>Probability density function</topic><topic>probability density function (PDF)</topic><topic>Probability density functions</topic><topic>Propagation</topic><topic>Quadrature amplitude modulation</topic><topic>Rayleigh channels</topic><topic>Statistical analysis</topic><topic>symbol error probability (SEP)</topic><topic>vehicular-to-vehicular (V2V) channels</topic><topic>Wireless communication</topic><topic>Wireless communication systems</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hajri, Nazih</creatorcontrib><creatorcontrib>Youssef, Neji</creatorcontrib><creatorcontrib>Kawabata, Tsutomu</creatorcontrib><creatorcontrib>Patzold, Matthias</creatorcontrib><creatorcontrib>Dahech, Wiem</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hajri, Nazih</au><au>Youssef, Neji</au><au>Kawabata, Tsutomu</au><au>Patzold, Matthias</au><au>Dahech, Wiem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Properties of Double Hoyt Fading With Applications to the Performance Analysis of Wireless Communication Systems</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>19597</spage><epage>19609</epage><pages>19597-19609</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[In this paper, we investigate the statistical properties of double Hoyt fading channels, where the overall received signal is determined by the product of two statistically independent but not necessarily identically distributed single Hoyt processes. Finite-range integral expressions are first derived for the probability density function (PDF), cumulative distribution function (CDF), level-crossing rate (LCR), and average duration of fades of the envelope fading process. A closed-form approximate solution is also deduced for the LCR by making use of the Laplace approximation theorem. Applying the derived PDF of the double Hoyt channel, we then provide analytical expressions for the average symbol error probability of both coherent M-ary phase-shift keying and square M-ary quadrature amplitude modulation schemes. It is shown that all the obtained theoretical results include those that are already known for double Rayleigh channels as a special case. In addition, simplified expressions for the Hoyt<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>Rayleigh, Rayleigh<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>one-sided Gaussian, and double one-sided Gaussian channels are presented. Moreover, the applicableness of the proposed model to measured real-world propagation channels is examined and discussed by comparing the derived CDF and LCR with published measurement data collected in inter-vehicular propagation environments. Numerical and simulation results are also provided to confirm the validity of the derivations.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2820746</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1675-1741</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018-01, Vol.6, p.19597-19609
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8332944
source IEEE Xplore Open Access Journals
subjects Analytical models
average duration of fades (ADF)
Channels
Codes
cumulative distribution function (CDF)
Distribution functions
Double Hoyt fading channel model
Exact solutions
Fading
Gaussian processes
level-crossing rate (LCR)
Mathematical analysis
Performance analysis
Phase shift keying
Probability density function
probability density function (PDF)
Probability density functions
Propagation
Quadrature amplitude modulation
Rayleigh channels
Statistical analysis
symbol error probability (SEP)
vehicular-to-vehicular (V2V) channels
Wireless communication
Wireless communication systems
Wireless communications
title Statistical Properties of Double Hoyt Fading With Applications to the Performance Analysis of Wireless Communication Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A40%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Properties%20of%20Double%20Hoyt%20Fading%20With%20Applications%20to%20the%20Performance%20Analysis%20of%20Wireless%20Communication%20Systems&rft.jtitle=IEEE%20access&rft.au=Hajri,%20Nazih&rft.date=2018-01-01&rft.volume=6&rft.spage=19597&rft.epage=19609&rft.pages=19597-19609&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2820746&rft_dat=%3Cproquest_ieee_%3E2455930031%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-96b93119ea9c2e602c3e5a603d99202f7496a2cd5af3ce426d4d3e17936b9e153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455930031&rft_id=info:pmid/&rft_ieee_id=8332944&rfr_iscdi=true