Loading…
Grid-less estimation of saturated signals
This work proposes a frequency and amplitude estimator tailored for noise corrupted signals that have been clipped. Formulated as a sparse reconstruction problem, the proposed algorithm estimates the signal parameters by solving an atomic norm minimization problem. The estimator also exploits the wa...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 376 |
container_issue | |
container_start_page | 372 |
container_title | |
container_volume | |
creator | Elvander, Filip Sward, Johan Jakobsson, Andreas |
description | This work proposes a frequency and amplitude estimator tailored for noise corrupted signals that have been clipped. Formulated as a sparse reconstruction problem, the proposed algorithm estimates the signal parameters by solving an atomic norm minimization problem. The estimator also exploits the waveform information provided by the clipped samples, incorporated in the form of linear constraints that have been augmented by slack variables as to provide robustness to noise. Numerical examples indicate that the algorithm offers preferable performance as compared to methods not exploiting the saturated samples. |
doi_str_mv | 10.1109/ACSSC.2017.8335204 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8335204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8335204</ieee_id><sourcerecordid>8335204</sourcerecordid><originalsourceid>FETCH-LOGICAL-i244t-88df1c2bb51dd58ce4c9f6437a94dde5a05603ec1d43818055f1b95e70ed2bba3</originalsourceid><addsrcrecordid>eNotj81KAzEURqMgWGtfQDezdZHx3vxnWQZthUIXreuSmdxIpLYyiQvf3gG7Oqvv8B3GHhBaRPDPy26361oBaFsnpRagrtjCW4daOgPGGHvNZkJbw4UEecvuSvkEECCcmLGn1ZgjP1IpDZWav0LN51NzTk0J9WcMlWJT8scpHMs9u0kTaHHhnL2_vuy7Nd9sV2_dcsOzUKpy52LCQfS9xhi1G0gNPhklbfAqRtIBtAFJA0YlHTrQOmHvNVmgOK2CnLPHf28mosP3OH0afw-XMvkH6JJB2g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Grid-less estimation of saturated signals</title><source>IEEE Xplore All Conference Series</source><creator>Elvander, Filip ; Sward, Johan ; Jakobsson, Andreas</creator><creatorcontrib>Elvander, Filip ; Sward, Johan ; Jakobsson, Andreas</creatorcontrib><description>This work proposes a frequency and amplitude estimator tailored for noise corrupted signals that have been clipped. Formulated as a sparse reconstruction problem, the proposed algorithm estimates the signal parameters by solving an atomic norm minimization problem. The estimator also exploits the waveform information provided by the clipped samples, incorporated in the form of linear constraints that have been augmented by slack variables as to provide robustness to noise. Numerical examples indicate that the algorithm offers preferable performance as compared to methods not exploiting the saturated samples.</description><identifier>EISSN: 2576-2303</identifier><identifier>EISBN: 9781538606667</identifier><identifier>EISBN: 9781538618233</identifier><identifier>EISBN: 1538606666</identifier><identifier>EISBN: 1538618230</identifier><identifier>DOI: 10.1109/ACSSC.2017.8335204</identifier><language>eng</language><publisher>IEEE</publisher><subject>atomic norm ; de-clipping ; Frequency estimation ; gridless reconstruction ; Image reconstruction ; Minimization ; Noise measurement ; Optimization ; Robustness ; Signal to noise ratio</subject><ispartof>2017 51st Asilomar Conference on Signals, Systems, and Computers, 2017, p.372-376</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8335204$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8335204$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Elvander, Filip</creatorcontrib><creatorcontrib>Sward, Johan</creatorcontrib><creatorcontrib>Jakobsson, Andreas</creatorcontrib><title>Grid-less estimation of saturated signals</title><title>2017 51st Asilomar Conference on Signals, Systems, and Computers</title><addtitle>ACSSC</addtitle><description>This work proposes a frequency and amplitude estimator tailored for noise corrupted signals that have been clipped. Formulated as a sparse reconstruction problem, the proposed algorithm estimates the signal parameters by solving an atomic norm minimization problem. The estimator also exploits the waveform information provided by the clipped samples, incorporated in the form of linear constraints that have been augmented by slack variables as to provide robustness to noise. Numerical examples indicate that the algorithm offers preferable performance as compared to methods not exploiting the saturated samples.</description><subject>atomic norm</subject><subject>de-clipping</subject><subject>Frequency estimation</subject><subject>gridless reconstruction</subject><subject>Image reconstruction</subject><subject>Minimization</subject><subject>Noise measurement</subject><subject>Optimization</subject><subject>Robustness</subject><subject>Signal to noise ratio</subject><issn>2576-2303</issn><isbn>9781538606667</isbn><isbn>9781538618233</isbn><isbn>1538606666</isbn><isbn>1538618230</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KAzEURqMgWGtfQDezdZHx3vxnWQZthUIXreuSmdxIpLYyiQvf3gG7Oqvv8B3GHhBaRPDPy26361oBaFsnpRagrtjCW4daOgPGGHvNZkJbw4UEecvuSvkEECCcmLGn1ZgjP1IpDZWav0LN51NzTk0J9WcMlWJT8scpHMs9u0kTaHHhnL2_vuy7Nd9sV2_dcsOzUKpy52LCQfS9xhi1G0gNPhklbfAqRtIBtAFJA0YlHTrQOmHvNVmgOK2CnLPHf28mosP3OH0afw-XMvkH6JJB2g</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Elvander, Filip</creator><creator>Sward, Johan</creator><creator>Jakobsson, Andreas</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201710</creationdate><title>Grid-less estimation of saturated signals</title><author>Elvander, Filip ; Sward, Johan ; Jakobsson, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i244t-88df1c2bb51dd58ce4c9f6437a94dde5a05603ec1d43818055f1b95e70ed2bba3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>atomic norm</topic><topic>de-clipping</topic><topic>Frequency estimation</topic><topic>gridless reconstruction</topic><topic>Image reconstruction</topic><topic>Minimization</topic><topic>Noise measurement</topic><topic>Optimization</topic><topic>Robustness</topic><topic>Signal to noise ratio</topic><toplevel>online_resources</toplevel><creatorcontrib>Elvander, Filip</creatorcontrib><creatorcontrib>Sward, Johan</creatorcontrib><creatorcontrib>Jakobsson, Andreas</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Elvander, Filip</au><au>Sward, Johan</au><au>Jakobsson, Andreas</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Grid-less estimation of saturated signals</atitle><btitle>2017 51st Asilomar Conference on Signals, Systems, and Computers</btitle><stitle>ACSSC</stitle><date>2017-10</date><risdate>2017</risdate><spage>372</spage><epage>376</epage><pages>372-376</pages><eissn>2576-2303</eissn><eisbn>9781538606667</eisbn><eisbn>9781538618233</eisbn><eisbn>1538606666</eisbn><eisbn>1538618230</eisbn><abstract>This work proposes a frequency and amplitude estimator tailored for noise corrupted signals that have been clipped. Formulated as a sparse reconstruction problem, the proposed algorithm estimates the signal parameters by solving an atomic norm minimization problem. The estimator also exploits the waveform information provided by the clipped samples, incorporated in the form of linear constraints that have been augmented by slack variables as to provide robustness to noise. Numerical examples indicate that the algorithm offers preferable performance as compared to methods not exploiting the saturated samples.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2017.8335204</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2576-2303 |
ispartof | 2017 51st Asilomar Conference on Signals, Systems, and Computers, 2017, p.372-376 |
issn | 2576-2303 |
language | eng |
recordid | cdi_ieee_primary_8335204 |
source | IEEE Xplore All Conference Series |
subjects | atomic norm de-clipping Frequency estimation gridless reconstruction Image reconstruction Minimization Noise measurement Optimization Robustness Signal to noise ratio |
title | Grid-less estimation of saturated signals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Grid-less%20estimation%20of%20saturated%20signals&rft.btitle=2017%2051st%20Asilomar%20Conference%20on%20Signals,%20Systems,%20and%20Computers&rft.au=Elvander,%20Filip&rft.date=2017-10&rft.spage=372&rft.epage=376&rft.pages=372-376&rft.eissn=2576-2303&rft_id=info:doi/10.1109/ACSSC.2017.8335204&rft.eisbn=9781538606667&rft.eisbn_list=9781538618233&rft.eisbn_list=1538606666&rft.eisbn_list=1538618230&rft_dat=%3Cieee_CHZPO%3E8335204%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i244t-88df1c2bb51dd58ce4c9f6437a94dde5a05603ec1d43818055f1b95e70ed2bba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8335204&rfr_iscdi=true |