Loading…

Grid-less estimation of saturated signals

This work proposes a frequency and amplitude estimator tailored for noise corrupted signals that have been clipped. Formulated as a sparse reconstruction problem, the proposed algorithm estimates the signal parameters by solving an atomic norm minimization problem. The estimator also exploits the wa...

Full description

Saved in:
Bibliographic Details
Main Authors: Elvander, Filip, Sward, Johan, Jakobsson, Andreas
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 376
container_issue
container_start_page 372
container_title
container_volume
creator Elvander, Filip
Sward, Johan
Jakobsson, Andreas
description This work proposes a frequency and amplitude estimator tailored for noise corrupted signals that have been clipped. Formulated as a sparse reconstruction problem, the proposed algorithm estimates the signal parameters by solving an atomic norm minimization problem. The estimator also exploits the waveform information provided by the clipped samples, incorporated in the form of linear constraints that have been augmented by slack variables as to provide robustness to noise. Numerical examples indicate that the algorithm offers preferable performance as compared to methods not exploiting the saturated samples.
doi_str_mv 10.1109/ACSSC.2017.8335204
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8335204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8335204</ieee_id><sourcerecordid>8335204</sourcerecordid><originalsourceid>FETCH-LOGICAL-i244t-88df1c2bb51dd58ce4c9f6437a94dde5a05603ec1d43818055f1b95e70ed2bba3</originalsourceid><addsrcrecordid>eNotj81KAzEURqMgWGtfQDezdZHx3vxnWQZthUIXreuSmdxIpLYyiQvf3gG7Oqvv8B3GHhBaRPDPy26361oBaFsnpRagrtjCW4daOgPGGHvNZkJbw4UEecvuSvkEECCcmLGn1ZgjP1IpDZWav0LN51NzTk0J9WcMlWJT8scpHMs9u0kTaHHhnL2_vuy7Nd9sV2_dcsOzUKpy52LCQfS9xhi1G0gNPhklbfAqRtIBtAFJA0YlHTrQOmHvNVmgOK2CnLPHf28mosP3OH0afw-XMvkH6JJB2g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Grid-less estimation of saturated signals</title><source>IEEE Xplore All Conference Series</source><creator>Elvander, Filip ; Sward, Johan ; Jakobsson, Andreas</creator><creatorcontrib>Elvander, Filip ; Sward, Johan ; Jakobsson, Andreas</creatorcontrib><description>This work proposes a frequency and amplitude estimator tailored for noise corrupted signals that have been clipped. Formulated as a sparse reconstruction problem, the proposed algorithm estimates the signal parameters by solving an atomic norm minimization problem. The estimator also exploits the waveform information provided by the clipped samples, incorporated in the form of linear constraints that have been augmented by slack variables as to provide robustness to noise. Numerical examples indicate that the algorithm offers preferable performance as compared to methods not exploiting the saturated samples.</description><identifier>EISSN: 2576-2303</identifier><identifier>EISBN: 9781538606667</identifier><identifier>EISBN: 9781538618233</identifier><identifier>EISBN: 1538606666</identifier><identifier>EISBN: 1538618230</identifier><identifier>DOI: 10.1109/ACSSC.2017.8335204</identifier><language>eng</language><publisher>IEEE</publisher><subject>atomic norm ; de-clipping ; Frequency estimation ; gridless reconstruction ; Image reconstruction ; Minimization ; Noise measurement ; Optimization ; Robustness ; Signal to noise ratio</subject><ispartof>2017 51st Asilomar Conference on Signals, Systems, and Computers, 2017, p.372-376</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8335204$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8335204$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Elvander, Filip</creatorcontrib><creatorcontrib>Sward, Johan</creatorcontrib><creatorcontrib>Jakobsson, Andreas</creatorcontrib><title>Grid-less estimation of saturated signals</title><title>2017 51st Asilomar Conference on Signals, Systems, and Computers</title><addtitle>ACSSC</addtitle><description>This work proposes a frequency and amplitude estimator tailored for noise corrupted signals that have been clipped. Formulated as a sparse reconstruction problem, the proposed algorithm estimates the signal parameters by solving an atomic norm minimization problem. The estimator also exploits the waveform information provided by the clipped samples, incorporated in the form of linear constraints that have been augmented by slack variables as to provide robustness to noise. Numerical examples indicate that the algorithm offers preferable performance as compared to methods not exploiting the saturated samples.</description><subject>atomic norm</subject><subject>de-clipping</subject><subject>Frequency estimation</subject><subject>gridless reconstruction</subject><subject>Image reconstruction</subject><subject>Minimization</subject><subject>Noise measurement</subject><subject>Optimization</subject><subject>Robustness</subject><subject>Signal to noise ratio</subject><issn>2576-2303</issn><isbn>9781538606667</isbn><isbn>9781538618233</isbn><isbn>1538606666</isbn><isbn>1538618230</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KAzEURqMgWGtfQDezdZHx3vxnWQZthUIXreuSmdxIpLYyiQvf3gG7Oqvv8B3GHhBaRPDPy26361oBaFsnpRagrtjCW4daOgPGGHvNZkJbw4UEecvuSvkEECCcmLGn1ZgjP1IpDZWav0LN51NzTk0J9WcMlWJT8scpHMs9u0kTaHHhnL2_vuy7Nd9sV2_dcsOzUKpy52LCQfS9xhi1G0gNPhklbfAqRtIBtAFJA0YlHTrQOmHvNVmgOK2CnLPHf28mosP3OH0afw-XMvkH6JJB2g</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Elvander, Filip</creator><creator>Sward, Johan</creator><creator>Jakobsson, Andreas</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201710</creationdate><title>Grid-less estimation of saturated signals</title><author>Elvander, Filip ; Sward, Johan ; Jakobsson, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i244t-88df1c2bb51dd58ce4c9f6437a94dde5a05603ec1d43818055f1b95e70ed2bba3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>atomic norm</topic><topic>de-clipping</topic><topic>Frequency estimation</topic><topic>gridless reconstruction</topic><topic>Image reconstruction</topic><topic>Minimization</topic><topic>Noise measurement</topic><topic>Optimization</topic><topic>Robustness</topic><topic>Signal to noise ratio</topic><toplevel>online_resources</toplevel><creatorcontrib>Elvander, Filip</creatorcontrib><creatorcontrib>Sward, Johan</creatorcontrib><creatorcontrib>Jakobsson, Andreas</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Elvander, Filip</au><au>Sward, Johan</au><au>Jakobsson, Andreas</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Grid-less estimation of saturated signals</atitle><btitle>2017 51st Asilomar Conference on Signals, Systems, and Computers</btitle><stitle>ACSSC</stitle><date>2017-10</date><risdate>2017</risdate><spage>372</spage><epage>376</epage><pages>372-376</pages><eissn>2576-2303</eissn><eisbn>9781538606667</eisbn><eisbn>9781538618233</eisbn><eisbn>1538606666</eisbn><eisbn>1538618230</eisbn><abstract>This work proposes a frequency and amplitude estimator tailored for noise corrupted signals that have been clipped. Formulated as a sparse reconstruction problem, the proposed algorithm estimates the signal parameters by solving an atomic norm minimization problem. The estimator also exploits the waveform information provided by the clipped samples, incorporated in the form of linear constraints that have been augmented by slack variables as to provide robustness to noise. Numerical examples indicate that the algorithm offers preferable performance as compared to methods not exploiting the saturated samples.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2017.8335204</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2576-2303
ispartof 2017 51st Asilomar Conference on Signals, Systems, and Computers, 2017, p.372-376
issn 2576-2303
language eng
recordid cdi_ieee_primary_8335204
source IEEE Xplore All Conference Series
subjects atomic norm
de-clipping
Frequency estimation
gridless reconstruction
Image reconstruction
Minimization
Noise measurement
Optimization
Robustness
Signal to noise ratio
title Grid-less estimation of saturated signals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Grid-less%20estimation%20of%20saturated%20signals&rft.btitle=2017%2051st%20Asilomar%20Conference%20on%20Signals,%20Systems,%20and%20Computers&rft.au=Elvander,%20Filip&rft.date=2017-10&rft.spage=372&rft.epage=376&rft.pages=372-376&rft.eissn=2576-2303&rft_id=info:doi/10.1109/ACSSC.2017.8335204&rft.eisbn=9781538606667&rft.eisbn_list=9781538618233&rft.eisbn_list=1538606666&rft.eisbn_list=1538618230&rft_dat=%3Cieee_CHZPO%3E8335204%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i244t-88df1c2bb51dd58ce4c9f6437a94dde5a05603ec1d43818055f1b95e70ed2bba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8335204&rfr_iscdi=true