Loading…

Weighted time lag plot defect parameter extraction and GPU-based BTI modeling for BTI variability

Recent MOSFET devices exhibit a strong variability in their Bias Temperature Instability (BTI) induced degradation (e.g., Vth-shift). For identical stress patterns, each device exhibits unique degradation behavior. As BTI variability increases with shrinking device geometries, modeling BTI variabili...

Full description

Saved in:
Bibliographic Details
Main Authors: van Santen, Victor M., Diaz-Fortuny, Javier, Amrouch, Hussam, Martin-Martinez, Javier, Rodriguez, Rosana, Castro-Lopez, Rafael, Roca, Elisenda, Fernandez, Francisco V., Henkel, Jorg, Nafria, Montserrat
Format: Conference Proceeding
Language:English
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page P-CR.6-6
container_issue
container_start_page P-CR.6-1
container_title
container_volume
creator van Santen, Victor M.
Diaz-Fortuny, Javier
Amrouch, Hussam
Martin-Martinez, Javier
Rodriguez, Rosana
Castro-Lopez, Rafael
Roca, Elisenda
Fernandez, Francisco V.
Henkel, Jorg
Nafria, Montserrat
description Recent MOSFET devices exhibit a strong variability in their Bias Temperature Instability (BTI) induced degradation (e.g., Vth-shift). For identical stress patterns, each device exhibits unique degradation behavior. As BTI variability increases with shrinking device geometries, modeling BTI variability becomes essential. The challenge of modeling BTI variability is the significant time required to characterize a representative set of devices to properly calibrate the BTI variability model. In addition, (SPICE) circuit simulations under BTI variability are extremely time consuming. Both challenges originate from unique uncorrelated BTI behavior in each device. Each device features a unique set of defects with a unique state (occupied/unoccupied) in each defect. In this work, we tackle the characterization challenge by processing the data acquired from our parallel measurement setup with lightweight and fast defect extraction. Our novel weighted time lag plot defect parameter extraction, removes uncorrelated voltage noise and categorizes correlated noise (i.e., Random Telegraph Noise (RTN)) and discrete voltage steps (i.e., BTI). After the measurement data is processed, capture time, emission time and induced degradation of each defect can be extracted. After defect parameters are extracted, we can fit a bi-variate log-normal defect distribution and calibrate our BTI model. To employ a BTI variability model in circuit simulation, it must be able to model thousands of MOSFETs. Circuits consist of thousands of devices, each with unique behavior, resulting in computationally intensive modeling. Our GPU-based BTI variability model employs massive parallelism (beyond 1000 processing cores) found in graphic cards to model thousands of MOSFETs in seconds. Therefore, our novel defect parameter extraction methodology allows lightweight, yet accurate characterization of our model, while our model itself enables circuit simulations in large circuits as it models 100,000 MOSFETs in just 119s.
doi_str_mv 10.1109/IRPS.2018.8353659
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8353659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8353659</ieee_id><sourcerecordid>8353659</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-24cd6b98c1660fc5c2159ecf6ec7a6cf7481906a870e4082647fbb5ac641b1fc3</originalsourceid><addsrcrecordid>eNotkM1Kw0AUhUdBsNY-gLiZF0idm2T-llq0FgoWbXFZbiZ36kjShMkg9u1btKsD5-N8i8PYHYgpgLAPi_fVxzQXYKamkIWS9oJNrDYgC6Nkqa25ZCOwhcnAWLhmN8PwLUQuTnTE8JPC7itRzVNoiTe4433TJV6TJ5d4jxFbShQ5_aaILoVuz3Ff8_lqk1U4nHZP6wVvu5qasN9x38W_4gdjwCo0IR1u2ZXHZqDJOcds8_K8nr1my7f5Yva4zAJombK8dLWqrHGglPBOuhykJecVOY3KeV0asEKh0YJKYXJVal9VEp0qoQLvijG7__cGItr2MbQYD9vzI8URe1hVKg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Weighted time lag plot defect parameter extraction and GPU-based BTI modeling for BTI variability</title><source>IEEE Xplore All Conference Series</source><creator>van Santen, Victor M. ; Diaz-Fortuny, Javier ; Amrouch, Hussam ; Martin-Martinez, Javier ; Rodriguez, Rosana ; Castro-Lopez, Rafael ; Roca, Elisenda ; Fernandez, Francisco V. ; Henkel, Jorg ; Nafria, Montserrat</creator><creatorcontrib>van Santen, Victor M. ; Diaz-Fortuny, Javier ; Amrouch, Hussam ; Martin-Martinez, Javier ; Rodriguez, Rosana ; Castro-Lopez, Rafael ; Roca, Elisenda ; Fernandez, Francisco V. ; Henkel, Jorg ; Nafria, Montserrat</creatorcontrib><description>Recent MOSFET devices exhibit a strong variability in their Bias Temperature Instability (BTI) induced degradation (e.g., Vth-shift). For identical stress patterns, each device exhibits unique degradation behavior. As BTI variability increases with shrinking device geometries, modeling BTI variability becomes essential. The challenge of modeling BTI variability is the significant time required to characterize a representative set of devices to properly calibrate the BTI variability model. In addition, (SPICE) circuit simulations under BTI variability are extremely time consuming. Both challenges originate from unique uncorrelated BTI behavior in each device. Each device features a unique set of defects with a unique state (occupied/unoccupied) in each defect. In this work, we tackle the characterization challenge by processing the data acquired from our parallel measurement setup with lightweight and fast defect extraction. Our novel weighted time lag plot defect parameter extraction, removes uncorrelated voltage noise and categorizes correlated noise (i.e., Random Telegraph Noise (RTN)) and discrete voltage steps (i.e., BTI). After the measurement data is processed, capture time, emission time and induced degradation of each defect can be extracted. After defect parameters are extracted, we can fit a bi-variate log-normal defect distribution and calibrate our BTI model. To employ a BTI variability model in circuit simulation, it must be able to model thousands of MOSFETs. Circuits consist of thousands of devices, each with unique behavior, resulting in computationally intensive modeling. Our GPU-based BTI variability model employs massive parallelism (beyond 1000 processing cores) found in graphic cards to model thousands of MOSFETs in seconds. Therefore, our novel defect parameter extraction methodology allows lightweight, yet accurate characterization of our model, while our model itself enables circuit simulations in large circuits as it models 100,000 MOSFETs in just 119s.</description><identifier>EISSN: 1938-1891</identifier><identifier>EISBN: 9781538654798</identifier><identifier>EISBN: 1538654792</identifier><identifier>DOI: 10.1109/IRPS.2018.8353659</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>2018 IEEE International Reliability Physics Symposium (IRPS), 2018, p.P-CR.6-1-P-CR.6-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8353659$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,27908,54538,54915</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8353659$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>van Santen, Victor M.</creatorcontrib><creatorcontrib>Diaz-Fortuny, Javier</creatorcontrib><creatorcontrib>Amrouch, Hussam</creatorcontrib><creatorcontrib>Martin-Martinez, Javier</creatorcontrib><creatorcontrib>Rodriguez, Rosana</creatorcontrib><creatorcontrib>Castro-Lopez, Rafael</creatorcontrib><creatorcontrib>Roca, Elisenda</creatorcontrib><creatorcontrib>Fernandez, Francisco V.</creatorcontrib><creatorcontrib>Henkel, Jorg</creatorcontrib><creatorcontrib>Nafria, Montserrat</creatorcontrib><title>Weighted time lag plot defect parameter extraction and GPU-based BTI modeling for BTI variability</title><title>2018 IEEE International Reliability Physics Symposium (IRPS)</title><addtitle>IRPS</addtitle><description>Recent MOSFET devices exhibit a strong variability in their Bias Temperature Instability (BTI) induced degradation (e.g., Vth-shift). For identical stress patterns, each device exhibits unique degradation behavior. As BTI variability increases with shrinking device geometries, modeling BTI variability becomes essential. The challenge of modeling BTI variability is the significant time required to characterize a representative set of devices to properly calibrate the BTI variability model. In addition, (SPICE) circuit simulations under BTI variability are extremely time consuming. Both challenges originate from unique uncorrelated BTI behavior in each device. Each device features a unique set of defects with a unique state (occupied/unoccupied) in each defect. In this work, we tackle the characterization challenge by processing the data acquired from our parallel measurement setup with lightweight and fast defect extraction. Our novel weighted time lag plot defect parameter extraction, removes uncorrelated voltage noise and categorizes correlated noise (i.e., Random Telegraph Noise (RTN)) and discrete voltage steps (i.e., BTI). After the measurement data is processed, capture time, emission time and induced degradation of each defect can be extracted. After defect parameters are extracted, we can fit a bi-variate log-normal defect distribution and calibrate our BTI model. To employ a BTI variability model in circuit simulation, it must be able to model thousands of MOSFETs. Circuits consist of thousands of devices, each with unique behavior, resulting in computationally intensive modeling. Our GPU-based BTI variability model employs massive parallelism (beyond 1000 processing cores) found in graphic cards to model thousands of MOSFETs in seconds. Therefore, our novel defect parameter extraction methodology allows lightweight, yet accurate characterization of our model, while our model itself enables circuit simulations in large circuits as it models 100,000 MOSFETs in just 119s.</description><issn>1938-1891</issn><isbn>9781538654798</isbn><isbn>1538654792</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1Kw0AUhUdBsNY-gLiZF0idm2T-llq0FgoWbXFZbiZ36kjShMkg9u1btKsD5-N8i8PYHYgpgLAPi_fVxzQXYKamkIWS9oJNrDYgC6Nkqa25ZCOwhcnAWLhmN8PwLUQuTnTE8JPC7itRzVNoiTe4433TJV6TJ5d4jxFbShQ5_aaILoVuz3Ff8_lqk1U4nHZP6wVvu5qasN9x38W_4gdjwCo0IR1u2ZXHZqDJOcds8_K8nr1my7f5Yva4zAJombK8dLWqrHGglPBOuhykJecVOY3KeV0asEKh0YJKYXJVal9VEp0qoQLvijG7__cGItr2MbQYD9vzI8URe1hVKg</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>van Santen, Victor M.</creator><creator>Diaz-Fortuny, Javier</creator><creator>Amrouch, Hussam</creator><creator>Martin-Martinez, Javier</creator><creator>Rodriguez, Rosana</creator><creator>Castro-Lopez, Rafael</creator><creator>Roca, Elisenda</creator><creator>Fernandez, Francisco V.</creator><creator>Henkel, Jorg</creator><creator>Nafria, Montserrat</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201803</creationdate><title>Weighted time lag plot defect parameter extraction and GPU-based BTI modeling for BTI variability</title><author>van Santen, Victor M. ; Diaz-Fortuny, Javier ; Amrouch, Hussam ; Martin-Martinez, Javier ; Rodriguez, Rosana ; Castro-Lopez, Rafael ; Roca, Elisenda ; Fernandez, Francisco V. ; Henkel, Jorg ; Nafria, Montserrat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-24cd6b98c1660fc5c2159ecf6ec7a6cf7481906a870e4082647fbb5ac641b1fc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>van Santen, Victor M.</creatorcontrib><creatorcontrib>Diaz-Fortuny, Javier</creatorcontrib><creatorcontrib>Amrouch, Hussam</creatorcontrib><creatorcontrib>Martin-Martinez, Javier</creatorcontrib><creatorcontrib>Rodriguez, Rosana</creatorcontrib><creatorcontrib>Castro-Lopez, Rafael</creatorcontrib><creatorcontrib>Roca, Elisenda</creatorcontrib><creatorcontrib>Fernandez, Francisco V.</creatorcontrib><creatorcontrib>Henkel, Jorg</creatorcontrib><creatorcontrib>Nafria, Montserrat</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>van Santen, Victor M.</au><au>Diaz-Fortuny, Javier</au><au>Amrouch, Hussam</au><au>Martin-Martinez, Javier</au><au>Rodriguez, Rosana</au><au>Castro-Lopez, Rafael</au><au>Roca, Elisenda</au><au>Fernandez, Francisco V.</au><au>Henkel, Jorg</au><au>Nafria, Montserrat</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Weighted time lag plot defect parameter extraction and GPU-based BTI modeling for BTI variability</atitle><btitle>2018 IEEE International Reliability Physics Symposium (IRPS)</btitle><stitle>IRPS</stitle><date>2018-03</date><risdate>2018</risdate><spage>P-CR.6-1</spage><epage>P-CR.6-6</epage><pages>P-CR.6-1-P-CR.6-6</pages><eissn>1938-1891</eissn><eisbn>9781538654798</eisbn><eisbn>1538654792</eisbn><abstract>Recent MOSFET devices exhibit a strong variability in their Bias Temperature Instability (BTI) induced degradation (e.g., Vth-shift). For identical stress patterns, each device exhibits unique degradation behavior. As BTI variability increases with shrinking device geometries, modeling BTI variability becomes essential. The challenge of modeling BTI variability is the significant time required to characterize a representative set of devices to properly calibrate the BTI variability model. In addition, (SPICE) circuit simulations under BTI variability are extremely time consuming. Both challenges originate from unique uncorrelated BTI behavior in each device. Each device features a unique set of defects with a unique state (occupied/unoccupied) in each defect. In this work, we tackle the characterization challenge by processing the data acquired from our parallel measurement setup with lightweight and fast defect extraction. Our novel weighted time lag plot defect parameter extraction, removes uncorrelated voltage noise and categorizes correlated noise (i.e., Random Telegraph Noise (RTN)) and discrete voltage steps (i.e., BTI). After the measurement data is processed, capture time, emission time and induced degradation of each defect can be extracted. After defect parameters are extracted, we can fit a bi-variate log-normal defect distribution and calibrate our BTI model. To employ a BTI variability model in circuit simulation, it must be able to model thousands of MOSFETs. Circuits consist of thousands of devices, each with unique behavior, resulting in computationally intensive modeling. Our GPU-based BTI variability model employs massive parallelism (beyond 1000 processing cores) found in graphic cards to model thousands of MOSFETs in seconds. Therefore, our novel defect parameter extraction methodology allows lightweight, yet accurate characterization of our model, while our model itself enables circuit simulations in large circuits as it models 100,000 MOSFETs in just 119s.</abstract><pub>IEEE</pub><doi>10.1109/IRPS.2018.8353659</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1938-1891
ispartof 2018 IEEE International Reliability Physics Symposium (IRPS), 2018, p.P-CR.6-1-P-CR.6-6
issn 1938-1891
language eng
recordid cdi_ieee_primary_8353659
source IEEE Xplore All Conference Series
title Weighted time lag plot defect parameter extraction and GPU-based BTI modeling for BTI variability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A40%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Weighted%20time%20lag%20plot%20defect%20parameter%20extraction%20and%20GPU-based%20BTI%20modeling%20for%20BTI%20variability&rft.btitle=2018%20IEEE%20International%20Reliability%20Physics%20Symposium%20(IRPS)&rft.au=van%20Santen,%20Victor%20M.&rft.date=2018-03&rft.spage=P-CR.6-1&rft.epage=P-CR.6-6&rft.pages=P-CR.6-1-P-CR.6-6&rft.eissn=1938-1891&rft_id=info:doi/10.1109/IRPS.2018.8353659&rft.eisbn=9781538654798&rft.eisbn_list=1538654792&rft_dat=%3Cieee_CHZPO%3E8353659%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-24cd6b98c1660fc5c2159ecf6ec7a6cf7481906a870e4082647fbb5ac641b1fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8353659&rfr_iscdi=true