Loading…

Applications of the Kalman Filter to Chemical Sensors for Downstream Machine Learning

Chemical sensors play an important role in a variety of civilian and military domains. In these contexts, the ability to accurately and quickly identify chemical agents is of utmost importance. In practice, constraints on physical footprint, power consumption, ease of use, and time required for accu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2018-07, Vol.18 (13), p.5455-5463
Main Authors: Weiss, Matthew, Wiederoder, Michael S., Paffenroth, Randy C., Nallon, Eric C., Bright, Collin J., Schnee, Vincent P., McGraw, Shannon, Polcha, Michael, Uzarski, Joshua R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-dc81deaa925b2fe6586784897444d6725e923a0089b690040e8bbebb25c8a4593
cites cdi_FETCH-LOGICAL-c293t-dc81deaa925b2fe6586784897444d6725e923a0089b690040e8bbebb25c8a4593
container_end_page 5463
container_issue 13
container_start_page 5455
container_title IEEE sensors journal
container_volume 18
creator Weiss, Matthew
Wiederoder, Michael S.
Paffenroth, Randy C.
Nallon, Eric C.
Bright, Collin J.
Schnee, Vincent P.
McGraw, Shannon
Polcha, Michael
Uzarski, Joshua R.
description Chemical sensors play an important role in a variety of civilian and military domains. In these contexts, the ability to accurately and quickly identify chemical agents is of utmost importance. In practice, constraints on physical footprint, power consumption, ease of use, and time required for accurate detection often restrict the utility of sensors, particularly in remote and isolated regions. One solution to address this problem is the engineering of advanced signal processing techniques, which decrease the time required for accurate detection. This allows software to facilitate the construction of hardware that meet stringent power and concept of operations guidelines. In this paper, we propose the Kalman filter as a preprocessing technique applicable to chemical sensor time series data for downstream machine learning. Using data collected from a sensor array of multiple unique polymer-graphene nanoplatelet coated electrodes, we show accurate and early detection of both organophosphates and interferents is improved when the Kalman filter is used as a preprocessing technique. In particular, within two seconds of analyte exposure to the sensor array, classification using Kalman filtered first derivative estimates achieve an error of less than 10%. By comparison, the non-Kalman filtered data set has a classification error rate above 40% within this time. An advantage of our approach is classification does not depend on a set parameter, such as maximum resistance change, or a pre-determined exposure time, and which allows rapid classification immediately after analyte introduction.
doi_str_mv 10.1109/JSEN.2018.2836183
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8358219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8358219</ieee_id><sourcerecordid>2055072713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-dc81deaa925b2fe6586784897444d6725e923a0089b690040e8bbebb25c8a4593</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpfsb2siotrwKLUomd5aQTmiqJg50K8fckasVq7uLcO9JB6JqSCaXE3D2v5m8TRqieMM1TqvkJGlEpdUKV0KdD5iQRXH2eo4sYd4RQo6QaofW0basyd13pm4h9gbst4BdX1a7Bi7LqIODO49kW6h6q8Aqa6EPEhQ_43v80sQvgavzq8m3ZAF6CC03ZfF2is8JVEa6Od4zWi_nH7DFZvj88zabLJGeGd8km13QDzhkmM1ZAKnWqtNBGCSE2qWISDOOOEG2y1BAiCOgsgyxjMtdOSMPH6Paw2wb_vYfY2Z3fh6Z_aRmRkiimKO8peqDy4GMMUNg2lLULv5YSO9izgz072LNHe33n5tApAeCf11xqRg3_AyjIapk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2055072713</pqid></control><display><type>article</type><title>Applications of the Kalman Filter to Chemical Sensors for Downstream Machine Learning</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Weiss, Matthew ; Wiederoder, Michael S. ; Paffenroth, Randy C. ; Nallon, Eric C. ; Bright, Collin J. ; Schnee, Vincent P. ; McGraw, Shannon ; Polcha, Michael ; Uzarski, Joshua R.</creator><creatorcontrib>Weiss, Matthew ; Wiederoder, Michael S. ; Paffenroth, Randy C. ; Nallon, Eric C. ; Bright, Collin J. ; Schnee, Vincent P. ; McGraw, Shannon ; Polcha, Michael ; Uzarski, Joshua R.</creatorcontrib><description>Chemical sensors play an important role in a variety of civilian and military domains. In these contexts, the ability to accurately and quickly identify chemical agents is of utmost importance. In practice, constraints on physical footprint, power consumption, ease of use, and time required for accurate detection often restrict the utility of sensors, particularly in remote and isolated regions. One solution to address this problem is the engineering of advanced signal processing techniques, which decrease the time required for accurate detection. This allows software to facilitate the construction of hardware that meet stringent power and concept of operations guidelines. In this paper, we propose the Kalman filter as a preprocessing technique applicable to chemical sensor time series data for downstream machine learning. Using data collected from a sensor array of multiple unique polymer-graphene nanoplatelet coated electrodes, we show accurate and early detection of both organophosphates and interferents is improved when the Kalman filter is used as a preprocessing technique. In particular, within two seconds of analyte exposure to the sensor array, classification using Kalman filtered first derivative estimates achieve an error of less than 10%. By comparison, the non-Kalman filtered data set has a classification error rate above 40% within this time. An advantage of our approach is classification does not depend on a set parameter, such as maximum resistance change, or a pre-determined exposure time, and which allows rapid classification immediately after analyte introduction.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2018.2836183</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Chemical and biological sensors ; Chemical sensors ; Chemicals ; Classification ; Coated electrodes ; Kalman filters ; Machine learning ; Organic chemistry ; Organophosphates ; Power consumption ; Preprocessing ; Remote sensors ; Sensor arrays ; Sensor phenomena and characterization ; Sensors ; Signal processing ; Time series analysis</subject><ispartof>IEEE sensors journal, 2018-07, Vol.18 (13), p.5455-5463</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-dc81deaa925b2fe6586784897444d6725e923a0089b690040e8bbebb25c8a4593</citedby><cites>FETCH-LOGICAL-c293t-dc81deaa925b2fe6586784897444d6725e923a0089b690040e8bbebb25c8a4593</cites><orcidid>0000-0003-2930-1520 ; 0000-0003-2294-7142 ; 0000-0002-9039-2305 ; 0000-0002-4823-1348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8358219$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Weiss, Matthew</creatorcontrib><creatorcontrib>Wiederoder, Michael S.</creatorcontrib><creatorcontrib>Paffenroth, Randy C.</creatorcontrib><creatorcontrib>Nallon, Eric C.</creatorcontrib><creatorcontrib>Bright, Collin J.</creatorcontrib><creatorcontrib>Schnee, Vincent P.</creatorcontrib><creatorcontrib>McGraw, Shannon</creatorcontrib><creatorcontrib>Polcha, Michael</creatorcontrib><creatorcontrib>Uzarski, Joshua R.</creatorcontrib><title>Applications of the Kalman Filter to Chemical Sensors for Downstream Machine Learning</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Chemical sensors play an important role in a variety of civilian and military domains. In these contexts, the ability to accurately and quickly identify chemical agents is of utmost importance. In practice, constraints on physical footprint, power consumption, ease of use, and time required for accurate detection often restrict the utility of sensors, particularly in remote and isolated regions. One solution to address this problem is the engineering of advanced signal processing techniques, which decrease the time required for accurate detection. This allows software to facilitate the construction of hardware that meet stringent power and concept of operations guidelines. In this paper, we propose the Kalman filter as a preprocessing technique applicable to chemical sensor time series data for downstream machine learning. Using data collected from a sensor array of multiple unique polymer-graphene nanoplatelet coated electrodes, we show accurate and early detection of both organophosphates and interferents is improved when the Kalman filter is used as a preprocessing technique. In particular, within two seconds of analyte exposure to the sensor array, classification using Kalman filtered first derivative estimates achieve an error of less than 10%. By comparison, the non-Kalman filtered data set has a classification error rate above 40% within this time. An advantage of our approach is classification does not depend on a set parameter, such as maximum resistance change, or a pre-determined exposure time, and which allows rapid classification immediately after analyte introduction.</description><subject>Artificial intelligence</subject><subject>Chemical and biological sensors</subject><subject>Chemical sensors</subject><subject>Chemicals</subject><subject>Classification</subject><subject>Coated electrodes</subject><subject>Kalman filters</subject><subject>Machine learning</subject><subject>Organic chemistry</subject><subject>Organophosphates</subject><subject>Power consumption</subject><subject>Preprocessing</subject><subject>Remote sensors</subject><subject>Sensor arrays</subject><subject>Sensor phenomena and characterization</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Time series analysis</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpfsb2siotrwKLUomd5aQTmiqJg50K8fckasVq7uLcO9JB6JqSCaXE3D2v5m8TRqieMM1TqvkJGlEpdUKV0KdD5iQRXH2eo4sYd4RQo6QaofW0basyd13pm4h9gbst4BdX1a7Bi7LqIODO49kW6h6q8Aqa6EPEhQ_43v80sQvgavzq8m3ZAF6CC03ZfF2is8JVEa6Od4zWi_nH7DFZvj88zabLJGeGd8km13QDzhkmM1ZAKnWqtNBGCSE2qWISDOOOEG2y1BAiCOgsgyxjMtdOSMPH6Paw2wb_vYfY2Z3fh6Z_aRmRkiimKO8peqDy4GMMUNg2lLULv5YSO9izgz072LNHe33n5tApAeCf11xqRg3_AyjIapk</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Weiss, Matthew</creator><creator>Wiederoder, Michael S.</creator><creator>Paffenroth, Randy C.</creator><creator>Nallon, Eric C.</creator><creator>Bright, Collin J.</creator><creator>Schnee, Vincent P.</creator><creator>McGraw, Shannon</creator><creator>Polcha, Michael</creator><creator>Uzarski, Joshua R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2930-1520</orcidid><orcidid>https://orcid.org/0000-0003-2294-7142</orcidid><orcidid>https://orcid.org/0000-0002-9039-2305</orcidid><orcidid>https://orcid.org/0000-0002-4823-1348</orcidid></search><sort><creationdate>20180701</creationdate><title>Applications of the Kalman Filter to Chemical Sensors for Downstream Machine Learning</title><author>Weiss, Matthew ; Wiederoder, Michael S. ; Paffenroth, Randy C. ; Nallon, Eric C. ; Bright, Collin J. ; Schnee, Vincent P. ; McGraw, Shannon ; Polcha, Michael ; Uzarski, Joshua R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-dc81deaa925b2fe6586784897444d6725e923a0089b690040e8bbebb25c8a4593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial intelligence</topic><topic>Chemical and biological sensors</topic><topic>Chemical sensors</topic><topic>Chemicals</topic><topic>Classification</topic><topic>Coated electrodes</topic><topic>Kalman filters</topic><topic>Machine learning</topic><topic>Organic chemistry</topic><topic>Organophosphates</topic><topic>Power consumption</topic><topic>Preprocessing</topic><topic>Remote sensors</topic><topic>Sensor arrays</topic><topic>Sensor phenomena and characterization</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weiss, Matthew</creatorcontrib><creatorcontrib>Wiederoder, Michael S.</creatorcontrib><creatorcontrib>Paffenroth, Randy C.</creatorcontrib><creatorcontrib>Nallon, Eric C.</creatorcontrib><creatorcontrib>Bright, Collin J.</creatorcontrib><creatorcontrib>Schnee, Vincent P.</creatorcontrib><creatorcontrib>McGraw, Shannon</creatorcontrib><creatorcontrib>Polcha, Michael</creatorcontrib><creatorcontrib>Uzarski, Joshua R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weiss, Matthew</au><au>Wiederoder, Michael S.</au><au>Paffenroth, Randy C.</au><au>Nallon, Eric C.</au><au>Bright, Collin J.</au><au>Schnee, Vincent P.</au><au>McGraw, Shannon</au><au>Polcha, Michael</au><au>Uzarski, Joshua R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applications of the Kalman Filter to Chemical Sensors for Downstream Machine Learning</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>18</volume><issue>13</issue><spage>5455</spage><epage>5463</epage><pages>5455-5463</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Chemical sensors play an important role in a variety of civilian and military domains. In these contexts, the ability to accurately and quickly identify chemical agents is of utmost importance. In practice, constraints on physical footprint, power consumption, ease of use, and time required for accurate detection often restrict the utility of sensors, particularly in remote and isolated regions. One solution to address this problem is the engineering of advanced signal processing techniques, which decrease the time required for accurate detection. This allows software to facilitate the construction of hardware that meet stringent power and concept of operations guidelines. In this paper, we propose the Kalman filter as a preprocessing technique applicable to chemical sensor time series data for downstream machine learning. Using data collected from a sensor array of multiple unique polymer-graphene nanoplatelet coated electrodes, we show accurate and early detection of both organophosphates and interferents is improved when the Kalman filter is used as a preprocessing technique. In particular, within two seconds of analyte exposure to the sensor array, classification using Kalman filtered first derivative estimates achieve an error of less than 10%. By comparison, the non-Kalman filtered data set has a classification error rate above 40% within this time. An advantage of our approach is classification does not depend on a set parameter, such as maximum resistance change, or a pre-determined exposure time, and which allows rapid classification immediately after analyte introduction.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2018.2836183</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2930-1520</orcidid><orcidid>https://orcid.org/0000-0003-2294-7142</orcidid><orcidid>https://orcid.org/0000-0002-9039-2305</orcidid><orcidid>https://orcid.org/0000-0002-4823-1348</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2018-07, Vol.18 (13), p.5455-5463
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_8358219
source IEEE Electronic Library (IEL) Journals
subjects Artificial intelligence
Chemical and biological sensors
Chemical sensors
Chemicals
Classification
Coated electrodes
Kalman filters
Machine learning
Organic chemistry
Organophosphates
Power consumption
Preprocessing
Remote sensors
Sensor arrays
Sensor phenomena and characterization
Sensors
Signal processing
Time series analysis
title Applications of the Kalman Filter to Chemical Sensors for Downstream Machine Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applications%20of%20the%20Kalman%20Filter%20to%20Chemical%20Sensors%20for%20Downstream%20Machine%20Learning&rft.jtitle=IEEE%20sensors%20journal&rft.au=Weiss,%20Matthew&rft.date=2018-07-01&rft.volume=18&rft.issue=13&rft.spage=5455&rft.epage=5463&rft.pages=5455-5463&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2018.2836183&rft_dat=%3Cproquest_ieee_%3E2055072713%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-dc81deaa925b2fe6586784897444d6725e923a0089b690040e8bbebb25c8a4593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2055072713&rft_id=info:pmid/&rft_ieee_id=8358219&rfr_iscdi=true