Loading…

Determining the scale of image patches using a deep learning approach

Detecting the scale of histopathology images is important because it allows to exploit various sources of information to train deep learning (DL) models to recognise biological structures of interest. Large open access databases with images exist, such as The Cancer Genome Atlas (TCGA) and PubMed Ce...

Full description

Saved in:
Bibliographic Details
Main Authors: Otalora, Sebastian, Perdomo, Oscar, Atzori, Manfredo, Andersson, Mats, Jacobsson, Ludwig, Hedlund, Martin, Muller, Henning
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 846
container_issue
container_start_page 843
container_title
container_volume
creator Otalora, Sebastian
Perdomo, Oscar
Atzori, Manfredo
Andersson, Mats
Jacobsson, Ludwig
Hedlund, Martin
Muller, Henning
description Detecting the scale of histopathology images is important because it allows to exploit various sources of information to train deep learning (DL) models to recognise biological structures of interest. Large open access databases with images exist, such as The Cancer Genome Atlas (TCGA) and PubMed Central but very few models can use such datasets because of the variability of the data in color and scale and a lack of metadata. In this article, we present and compare two deep learning architectures, to detect the scale of histopathology image patches. The approach is evaluated on a patch dataset from whole slide images of the prostate, obtaining a Cohen's kappa coefficient of 0.9897 in the classification of patches with a scale of 5×, 10× and 20×. The good results represent a first step towards magnification detection in histopathology images that can help to solve the problem on more heterogeneous data sources.
doi_str_mv 10.1109/ISBI.2018.8363703
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8363703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8363703</ieee_id><sourcerecordid>8363703</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-2830ce357b3c801ec4dedec89281801b06bbc1b8bbb2a40a618680a70d8ca9123</originalsourceid><addsrcrecordid>eNotT8tOwzAQNEhIVCUfgLj4BxJ2bcfeHKGUEqkSB-Bc2c62CeojisOBvydA5zKa0exqRohbhAIRqvv67bEuFCAVpK12oC9EVjnCUpOdDOsuxQwrU-ZkSnUtspQ-YYIzRoOZieUTjzwcumN33MmxZZmi37M8bWV38DuWvR9jy0l-pd-Alw1zL_fsh78D3_fDycf2Rlxt_T5xdua5-Hhevi9e8vXrql48rPNOIY25Ig2RdemCjgTI0TTccKRKEU46gA0hYqAQgvIGvEWyBN5BQ9FXqPRc3P3_7Zh50w9Tx-F7cx6ufwAK4Uuq</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Determining the scale of image patches using a deep learning approach</title><source>IEEE Xplore All Conference Series</source><creator>Otalora, Sebastian ; Perdomo, Oscar ; Atzori, Manfredo ; Andersson, Mats ; Jacobsson, Ludwig ; Hedlund, Martin ; Muller, Henning</creator><creatorcontrib>Otalora, Sebastian ; Perdomo, Oscar ; Atzori, Manfredo ; Andersson, Mats ; Jacobsson, Ludwig ; Hedlund, Martin ; Muller, Henning</creatorcontrib><description>Detecting the scale of histopathology images is important because it allows to exploit various sources of information to train deep learning (DL) models to recognise biological structures of interest. Large open access databases with images exist, such as The Cancer Genome Atlas (TCGA) and PubMed Central but very few models can use such datasets because of the variability of the data in color and scale and a lack of metadata. In this article, we present and compare two deep learning architectures, to detect the scale of histopathology image patches. The approach is evaluated on a patch dataset from whole slide images of the prostate, obtaining a Cohen's kappa coefficient of 0.9897 in the classification of patches with a scale of 5×, 10× and 20×. The good results represent a first step towards magnification detection in histopathology images that can help to solve the problem on more heterogeneous data sources.</description><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 9781538636367</identifier><identifier>EISBN: 1538636360</identifier><identifier>DOI: 10.1109/ISBI.2018.8363703</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; Biomedical imaging ; Biopsy ; Cancer ; Computer architecture ; Deep Learning ; DenseNet ; Digital Pathology ; Machine learning ; Magnification ; Prostate ; Scale ; Training</subject><ispartof>2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018, p.843-846</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8363703$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8363703$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Otalora, Sebastian</creatorcontrib><creatorcontrib>Perdomo, Oscar</creatorcontrib><creatorcontrib>Atzori, Manfredo</creatorcontrib><creatorcontrib>Andersson, Mats</creatorcontrib><creatorcontrib>Jacobsson, Ludwig</creatorcontrib><creatorcontrib>Hedlund, Martin</creatorcontrib><creatorcontrib>Muller, Henning</creatorcontrib><title>Determining the scale of image patches using a deep learning approach</title><title>2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)</title><addtitle>ISBI</addtitle><description>Detecting the scale of histopathology images is important because it allows to exploit various sources of information to train deep learning (DL) models to recognise biological structures of interest. Large open access databases with images exist, such as The Cancer Genome Atlas (TCGA) and PubMed Central but very few models can use such datasets because of the variability of the data in color and scale and a lack of metadata. In this article, we present and compare two deep learning architectures, to detect the scale of histopathology image patches. The approach is evaluated on a patch dataset from whole slide images of the prostate, obtaining a Cohen's kappa coefficient of 0.9897 in the classification of patches with a scale of 5×, 10× and 20×. The good results represent a first step towards magnification detection in histopathology images that can help to solve the problem on more heterogeneous data sources.</description><subject>Biological system modeling</subject><subject>Biomedical imaging</subject><subject>Biopsy</subject><subject>Cancer</subject><subject>Computer architecture</subject><subject>Deep Learning</subject><subject>DenseNet</subject><subject>Digital Pathology</subject><subject>Machine learning</subject><subject>Magnification</subject><subject>Prostate</subject><subject>Scale</subject><subject>Training</subject><issn>1945-8452</issn><isbn>9781538636367</isbn><isbn>1538636360</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT8tOwzAQNEhIVCUfgLj4BxJ2bcfeHKGUEqkSB-Bc2c62CeojisOBvydA5zKa0exqRohbhAIRqvv67bEuFCAVpK12oC9EVjnCUpOdDOsuxQwrU-ZkSnUtspQ-YYIzRoOZieUTjzwcumN33MmxZZmi37M8bWV38DuWvR9jy0l-pd-Alw1zL_fsh78D3_fDycf2Rlxt_T5xdua5-Hhevi9e8vXrql48rPNOIY25Ig2RdemCjgTI0TTccKRKEU46gA0hYqAQgvIGvEWyBN5BQ9FXqPRc3P3_7Zh50w9Tx-F7cx6ufwAK4Uuq</recordid><startdate>20180523</startdate><enddate>20180523</enddate><creator>Otalora, Sebastian</creator><creator>Perdomo, Oscar</creator><creator>Atzori, Manfredo</creator><creator>Andersson, Mats</creator><creator>Jacobsson, Ludwig</creator><creator>Hedlund, Martin</creator><creator>Muller, Henning</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20180523</creationdate><title>Determining the scale of image patches using a deep learning approach</title><author>Otalora, Sebastian ; Perdomo, Oscar ; Atzori, Manfredo ; Andersson, Mats ; Jacobsson, Ludwig ; Hedlund, Martin ; Muller, Henning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-2830ce357b3c801ec4dedec89281801b06bbc1b8bbb2a40a618680a70d8ca9123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biological system modeling</topic><topic>Biomedical imaging</topic><topic>Biopsy</topic><topic>Cancer</topic><topic>Computer architecture</topic><topic>Deep Learning</topic><topic>DenseNet</topic><topic>Digital Pathology</topic><topic>Machine learning</topic><topic>Magnification</topic><topic>Prostate</topic><topic>Scale</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Otalora, Sebastian</creatorcontrib><creatorcontrib>Perdomo, Oscar</creatorcontrib><creatorcontrib>Atzori, Manfredo</creatorcontrib><creatorcontrib>Andersson, Mats</creatorcontrib><creatorcontrib>Jacobsson, Ludwig</creatorcontrib><creatorcontrib>Hedlund, Martin</creatorcontrib><creatorcontrib>Muller, Henning</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Otalora, Sebastian</au><au>Perdomo, Oscar</au><au>Atzori, Manfredo</au><au>Andersson, Mats</au><au>Jacobsson, Ludwig</au><au>Hedlund, Martin</au><au>Muller, Henning</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Determining the scale of image patches using a deep learning approach</atitle><btitle>2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)</btitle><stitle>ISBI</stitle><date>2018-05-23</date><risdate>2018</risdate><spage>843</spage><epage>846</epage><pages>843-846</pages><eissn>1945-8452</eissn><eisbn>9781538636367</eisbn><eisbn>1538636360</eisbn><abstract>Detecting the scale of histopathology images is important because it allows to exploit various sources of information to train deep learning (DL) models to recognise biological structures of interest. Large open access databases with images exist, such as The Cancer Genome Atlas (TCGA) and PubMed Central but very few models can use such datasets because of the variability of the data in color and scale and a lack of metadata. In this article, we present and compare two deep learning architectures, to detect the scale of histopathology image patches. The approach is evaluated on a patch dataset from whole slide images of the prostate, obtaining a Cohen's kappa coefficient of 0.9897 in the classification of patches with a scale of 5×, 10× and 20×. The good results represent a first step towards magnification detection in histopathology images that can help to solve the problem on more heterogeneous data sources.</abstract><pub>IEEE</pub><doi>10.1109/ISBI.2018.8363703</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1945-8452
ispartof 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018, p.843-846
issn 1945-8452
language eng
recordid cdi_ieee_primary_8363703
source IEEE Xplore All Conference Series
subjects Biological system modeling
Biomedical imaging
Biopsy
Cancer
Computer architecture
Deep Learning
DenseNet
Digital Pathology
Machine learning
Magnification
Prostate
Scale
Training
title Determining the scale of image patches using a deep learning approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Determining%20the%20scale%20of%20image%20patches%20using%20a%20deep%20learning%20approach&rft.btitle=2018%20IEEE%2015th%20International%20Symposium%20on%20Biomedical%20Imaging%20(ISBI%202018)&rft.au=Otalora,%20Sebastian&rft.date=2018-05-23&rft.spage=843&rft.epage=846&rft.pages=843-846&rft.eissn=1945-8452&rft_id=info:doi/10.1109/ISBI.2018.8363703&rft.eisbn=9781538636367&rft.eisbn_list=1538636360&rft_dat=%3Cieee_CHZPO%3E8363703%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i218t-2830ce357b3c801ec4dedec89281801b06bbc1b8bbb2a40a618680a70d8ca9123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8363703&rfr_iscdi=true