Loading…

Kernel Deep Regression Network for Touch-Stroke Dynamics Authentication

Touch-stroke dynamics is an emerging behavioral biometrics justified feasible for mobile identity management. A touch-stroke dynamics authentication system is composed of a hand-engineered feature extractor and a classifier separately. In this letter, we propose a stacking-based deep learning networ...

Full description

Saved in:
Bibliographic Details
Published in:IEEE signal processing letters 2018-07, Vol.25 (7), p.1109-1113
Main Authors: Chang, Inho, Low, Cheng-Yaw, Choi, Seokmin, Teoh, Andrew Beng-Jin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Touch-stroke dynamics is an emerging behavioral biometrics justified feasible for mobile identity management. A touch-stroke dynamics authentication system is composed of a hand-engineered feature extractor and a classifier separately. In this letter, we propose a stacking-based deep learning network that performs feature extraction and classification, collectively dubbed Kernel Deep Regression Network (KDRN). The KDRN is built on multiple kernel ridge regressions (KRR) hierarchically, where each is trained analytically and independently. In principal, KDRN does not mean to learn directly from the raw touch-stroke data like other deep learning models, but it relearns from the pre-extracted features to yield a richer and a relatively more discriminative feature set. Subsequent to that, the authentication is carried out by KRR. Overall, KDRN achieves an equal error rate of 0.013% for intrasession authentication, 0.023% for intersession authentication, and 0.121% for interweek authentication on the Touchlaytics dataset.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2018.2846050