Loading…
Clasp-Knife Model of Muscle Spasticity for Simulation of Robot-Human Interaction
The objective of this research was to replicate the muscle tone moment feedback of elbow upon passive mobilization and classify them based on modified ashworth scale criterion using a mathematical model. The proposed model enables the visualization of muscle tone pattern for robotic interaction simu...
Saved in:
Published in: | IEEE access 2019, Vol.7, p.1355-1364 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-c17dfeb71a006576093a8b814563e4f0f2e7d70dbf7824544f723390f303daae3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-c17dfeb71a006576093a8b814563e4f0f2e7d70dbf7824544f723390f303daae3 |
container_end_page | 1364 |
container_issue | |
container_start_page | 1355 |
container_title | IEEE access |
container_volume | 7 |
creator | Mat Rosly, Hadi Sidek, Shahrul Naim Ahmad Puzi, Asmarani Yusoff, Hazlina Md Daud, Narimah Mat Rosly, Maziah |
description | The objective of this research was to replicate the muscle tone moment feedback of elbow upon passive mobilization and classify them based on modified ashworth scale criterion using a mathematical model. The proposed model enables the visualization of muscle tone pattern for robotic interaction simulation. A concurrent muscle tone model necessitates a jerk effect to fully replicate the catch and release effect, also known as, clasp-knife phenomenon of muscle tone feedback. However, the research of passive mobilization control interaction between robot and subject does not emulate such phenomenon. Thus, the model was improvised to replicate the clasp-knife phenomenon according to the robot's gross kinematics and dynamics. The model was designed based on the quantitative pattern of muscle tone feedback from subject with spasticity. The simulated model was then correlated to clinical measures using similar kinematic and dynamic input. The velocity dynamic input was splined to obtain the velocity trend without the jerk effect. The results obtained from the proposed model were relatively promising with an overall (n=9\times 4) linear (Pearson) correlated average of \bar {r}=0.8348 for nine subjects with correlation significant at the 0.01 level ( p< 0.01 ) and five of them presented a distinctive clasp-knife phenomenon with correlation average of \bar {r}=0.8631 . |
doi_str_mv | 10.1109/ACCESS.2018.2846595 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8382150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8382150</ieee_id><doaj_id>oai_doaj_org_article_3fe271495350473f8098951ad5a38e46</doaj_id><sourcerecordid>2455644157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c17dfeb71a006576093a8b814563e4f0f2e7d70dbf7824544f723390f303daae3</originalsourceid><addsrcrecordid>eNpNUUtLw0AQDqJgqf0FvQQ8p-5mnzmWUG2xRTF6XjbJrKSk2bibHPrvTUwpzmWGme8x8AXBEqMVxih5WqfpJstWMcJyFUvKWcJuglmMeRIRRvjtv_k-WHh_REPJYcXELHhPa-3b6LWpDIQHW0IdWhMeel_UEGat9l1VVN05NNaFWXXqa91VthkxHza3XbTtT7oJd00HThfj6SG4M7r2sLj0efD1vPlMt9H-7WWXrvdRQZHsogKL0kAusEaIM8FRQrTMJaaME6AGmRhEKVCZGyFjyig1IiYkQYYgUmoNZB7sJt3S6qNqXXXS7qysrtTfwrpvpd3wfA2KGIgFpgkjDFFBjESJTBjWJdNEAuWD1uOk1Tr704Pv1NH2rhneV4M345RiJgYUmVCFs947MFdXjNSYhJqSUGMS6pLEwFpOrAoArgxJZIwZIr8EjoJE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455644157</pqid></control><display><type>article</type><title>Clasp-Knife Model of Muscle Spasticity for Simulation of Robot-Human Interaction</title><source>IEEE Xplore Open Access Journals</source><creator>Mat Rosly, Hadi ; Sidek, Shahrul Naim ; Ahmad Puzi, Asmarani ; Yusoff, Hazlina Md ; Daud, Narimah ; Mat Rosly, Maziah</creator><creatorcontrib>Mat Rosly, Hadi ; Sidek, Shahrul Naim ; Ahmad Puzi, Asmarani ; Yusoff, Hazlina Md ; Daud, Narimah ; Mat Rosly, Maziah</creatorcontrib><description><![CDATA[The objective of this research was to replicate the muscle tone moment feedback of elbow upon passive mobilization and classify them based on modified ashworth scale criterion using a mathematical model. The proposed model enables the visualization of muscle tone pattern for robotic interaction simulation. A concurrent muscle tone model necessitates a jerk effect to fully replicate the catch and release effect, also known as, clasp-knife phenomenon of muscle tone feedback. However, the research of passive mobilization control interaction between robot and subject does not emulate such phenomenon. Thus, the model was improvised to replicate the clasp-knife phenomenon according to the robot's gross kinematics and dynamics. The model was designed based on the quantitative pattern of muscle tone feedback from subject with spasticity. The simulated model was then correlated to clinical measures using similar kinematic and dynamic input. The velocity dynamic input was splined to obtain the velocity trend without the jerk effect. The results obtained from the proposed model were relatively promising with an overall <inline-formula> <tex-math notation="LaTeX">(n=9\times 4) </tex-math></inline-formula> linear (Pearson) correlated average of <inline-formula> <tex-math notation="LaTeX">\bar {r}=0.8348 </tex-math></inline-formula> for nine subjects with correlation significant at the 0.01 level (<inline-formula> <tex-math notation="LaTeX">p< 0.01 </tex-math></inline-formula>) and five of them presented a distinctive clasp-knife phenomenon with correlation average of <inline-formula> <tex-math notation="LaTeX">\bar {r}=0.8631 </tex-math></inline-formula>.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2846595</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>biomedical engineering ; Correlation analysis ; Feedback ; Kinematics ; Mathematical model ; Mathematical models ; mathematics ; Modeling ; motion analysis ; Muscles ; Read only memory ; Resistance ; Robot control ; Robots ; Simulation ; Spasticity ; Training</subject><ispartof>IEEE access, 2019, Vol.7, p.1355-1364</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c17dfeb71a006576093a8b814563e4f0f2e7d70dbf7824544f723390f303daae3</citedby><cites>FETCH-LOGICAL-c408t-c17dfeb71a006576093a8b814563e4f0f2e7d70dbf7824544f723390f303daae3</cites><orcidid>0000-0001-6133-1952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8382150$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Mat Rosly, Hadi</creatorcontrib><creatorcontrib>Sidek, Shahrul Naim</creatorcontrib><creatorcontrib>Ahmad Puzi, Asmarani</creatorcontrib><creatorcontrib>Yusoff, Hazlina Md</creatorcontrib><creatorcontrib>Daud, Narimah</creatorcontrib><creatorcontrib>Mat Rosly, Maziah</creatorcontrib><title>Clasp-Knife Model of Muscle Spasticity for Simulation of Robot-Human Interaction</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[The objective of this research was to replicate the muscle tone moment feedback of elbow upon passive mobilization and classify them based on modified ashworth scale criterion using a mathematical model. The proposed model enables the visualization of muscle tone pattern for robotic interaction simulation. A concurrent muscle tone model necessitates a jerk effect to fully replicate the catch and release effect, also known as, clasp-knife phenomenon of muscle tone feedback. However, the research of passive mobilization control interaction between robot and subject does not emulate such phenomenon. Thus, the model was improvised to replicate the clasp-knife phenomenon according to the robot's gross kinematics and dynamics. The model was designed based on the quantitative pattern of muscle tone feedback from subject with spasticity. The simulated model was then correlated to clinical measures using similar kinematic and dynamic input. The velocity dynamic input was splined to obtain the velocity trend without the jerk effect. The results obtained from the proposed model were relatively promising with an overall <inline-formula> <tex-math notation="LaTeX">(n=9\times 4) </tex-math></inline-formula> linear (Pearson) correlated average of <inline-formula> <tex-math notation="LaTeX">\bar {r}=0.8348 </tex-math></inline-formula> for nine subjects with correlation significant at the 0.01 level (<inline-formula> <tex-math notation="LaTeX">p< 0.01 </tex-math></inline-formula>) and five of them presented a distinctive clasp-knife phenomenon with correlation average of <inline-formula> <tex-math notation="LaTeX">\bar {r}=0.8631 </tex-math></inline-formula>.]]></description><subject>biomedical engineering</subject><subject>Correlation analysis</subject><subject>Feedback</subject><subject>Kinematics</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>mathematics</subject><subject>Modeling</subject><subject>motion analysis</subject><subject>Muscles</subject><subject>Read only memory</subject><subject>Resistance</subject><subject>Robot control</subject><subject>Robots</subject><subject>Simulation</subject><subject>Spasticity</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtLw0AQDqJgqf0FvQQ8p-5mnzmWUG2xRTF6XjbJrKSk2bibHPrvTUwpzmWGme8x8AXBEqMVxih5WqfpJstWMcJyFUvKWcJuglmMeRIRRvjtv_k-WHh_REPJYcXELHhPa-3b6LWpDIQHW0IdWhMeel_UEGat9l1VVN05NNaFWXXqa91VthkxHza3XbTtT7oJd00HThfj6SG4M7r2sLj0efD1vPlMt9H-7WWXrvdRQZHsogKL0kAusEaIM8FRQrTMJaaME6AGmRhEKVCZGyFjyig1IiYkQYYgUmoNZB7sJt3S6qNqXXXS7qysrtTfwrpvpd3wfA2KGIgFpgkjDFFBjESJTBjWJdNEAuWD1uOk1Tr704Pv1NH2rhneV4M345RiJgYUmVCFs947MFdXjNSYhJqSUGMS6pLEwFpOrAoArgxJZIwZIr8EjoJE</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Mat Rosly, Hadi</creator><creator>Sidek, Shahrul Naim</creator><creator>Ahmad Puzi, Asmarani</creator><creator>Yusoff, Hazlina Md</creator><creator>Daud, Narimah</creator><creator>Mat Rosly, Maziah</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6133-1952</orcidid></search><sort><creationdate>2019</creationdate><title>Clasp-Knife Model of Muscle Spasticity for Simulation of Robot-Human Interaction</title><author>Mat Rosly, Hadi ; Sidek, Shahrul Naim ; Ahmad Puzi, Asmarani ; Yusoff, Hazlina Md ; Daud, Narimah ; Mat Rosly, Maziah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c17dfeb71a006576093a8b814563e4f0f2e7d70dbf7824544f723390f303daae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>biomedical engineering</topic><topic>Correlation analysis</topic><topic>Feedback</topic><topic>Kinematics</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>mathematics</topic><topic>Modeling</topic><topic>motion analysis</topic><topic>Muscles</topic><topic>Read only memory</topic><topic>Resistance</topic><topic>Robot control</topic><topic>Robots</topic><topic>Simulation</topic><topic>Spasticity</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mat Rosly, Hadi</creatorcontrib><creatorcontrib>Sidek, Shahrul Naim</creatorcontrib><creatorcontrib>Ahmad Puzi, Asmarani</creatorcontrib><creatorcontrib>Yusoff, Hazlina Md</creatorcontrib><creatorcontrib>Daud, Narimah</creatorcontrib><creatorcontrib>Mat Rosly, Maziah</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mat Rosly, Hadi</au><au>Sidek, Shahrul Naim</au><au>Ahmad Puzi, Asmarani</au><au>Yusoff, Hazlina Md</au><au>Daud, Narimah</au><au>Mat Rosly, Maziah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clasp-Knife Model of Muscle Spasticity for Simulation of Robot-Human Interaction</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>1355</spage><epage>1364</epage><pages>1355-1364</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[The objective of this research was to replicate the muscle tone moment feedback of elbow upon passive mobilization and classify them based on modified ashworth scale criterion using a mathematical model. The proposed model enables the visualization of muscle tone pattern for robotic interaction simulation. A concurrent muscle tone model necessitates a jerk effect to fully replicate the catch and release effect, also known as, clasp-knife phenomenon of muscle tone feedback. However, the research of passive mobilization control interaction between robot and subject does not emulate such phenomenon. Thus, the model was improvised to replicate the clasp-knife phenomenon according to the robot's gross kinematics and dynamics. The model was designed based on the quantitative pattern of muscle tone feedback from subject with spasticity. The simulated model was then correlated to clinical measures using similar kinematic and dynamic input. The velocity dynamic input was splined to obtain the velocity trend without the jerk effect. The results obtained from the proposed model were relatively promising with an overall <inline-formula> <tex-math notation="LaTeX">(n=9\times 4) </tex-math></inline-formula> linear (Pearson) correlated average of <inline-formula> <tex-math notation="LaTeX">\bar {r}=0.8348 </tex-math></inline-formula> for nine subjects with correlation significant at the 0.01 level (<inline-formula> <tex-math notation="LaTeX">p< 0.01 </tex-math></inline-formula>) and five of them presented a distinctive clasp-knife phenomenon with correlation average of <inline-formula> <tex-math notation="LaTeX">\bar {r}=0.8631 </tex-math></inline-formula>.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2846595</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6133-1952</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.1355-1364 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8382150 |
source | IEEE Xplore Open Access Journals |
subjects | biomedical engineering Correlation analysis Feedback Kinematics Mathematical model Mathematical models mathematics Modeling motion analysis Muscles Read only memory Resistance Robot control Robots Simulation Spasticity Training |
title | Clasp-Knife Model of Muscle Spasticity for Simulation of Robot-Human Interaction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clasp-Knife%20Model%20of%20Muscle%20Spasticity%20for%20Simulation%20of%20Robot-Human%20Interaction&rft.jtitle=IEEE%20access&rft.au=Mat%20Rosly,%20Hadi&rft.date=2019&rft.volume=7&rft.spage=1355&rft.epage=1364&rft.pages=1355-1364&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2846595&rft_dat=%3Cproquest_ieee_%3E2455644157%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-c17dfeb71a006576093a8b814563e4f0f2e7d70dbf7824544f723390f303daae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455644157&rft_id=info:pmid/&rft_ieee_id=8382150&rfr_iscdi=true |