Loading…

Clasp-Knife Model of Muscle Spasticity for Simulation of Robot-Human Interaction

The objective of this research was to replicate the muscle tone moment feedback of elbow upon passive mobilization and classify them based on modified ashworth scale criterion using a mathematical model. The proposed model enables the visualization of muscle tone pattern for robotic interaction simu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2019, Vol.7, p.1355-1364
Main Authors: Mat Rosly, Hadi, Sidek, Shahrul Naim, Ahmad Puzi, Asmarani, Yusoff, Hazlina Md, Daud, Narimah, Mat Rosly, Maziah
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-c17dfeb71a006576093a8b814563e4f0f2e7d70dbf7824544f723390f303daae3
cites cdi_FETCH-LOGICAL-c408t-c17dfeb71a006576093a8b814563e4f0f2e7d70dbf7824544f723390f303daae3
container_end_page 1364
container_issue
container_start_page 1355
container_title IEEE access
container_volume 7
creator Mat Rosly, Hadi
Sidek, Shahrul Naim
Ahmad Puzi, Asmarani
Yusoff, Hazlina Md
Daud, Narimah
Mat Rosly, Maziah
description The objective of this research was to replicate the muscle tone moment feedback of elbow upon passive mobilization and classify them based on modified ashworth scale criterion using a mathematical model. The proposed model enables the visualization of muscle tone pattern for robotic interaction simulation. A concurrent muscle tone model necessitates a jerk effect to fully replicate the catch and release effect, also known as, clasp-knife phenomenon of muscle tone feedback. However, the research of passive mobilization control interaction between robot and subject does not emulate such phenomenon. Thus, the model was improvised to replicate the clasp-knife phenomenon according to the robot's gross kinematics and dynamics. The model was designed based on the quantitative pattern of muscle tone feedback from subject with spasticity. The simulated model was then correlated to clinical measures using similar kinematic and dynamic input. The velocity dynamic input was splined to obtain the velocity trend without the jerk effect. The results obtained from the proposed model were relatively promising with an overall (n=9\times 4) linear (Pearson) correlated average of \bar {r}=0.8348 for nine subjects with correlation significant at the 0.01 level ( p< 0.01 ) and five of them presented a distinctive clasp-knife phenomenon with correlation average of \bar {r}=0.8631 .
doi_str_mv 10.1109/ACCESS.2018.2846595
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8382150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8382150</ieee_id><doaj_id>oai_doaj_org_article_3fe271495350473f8098951ad5a38e46</doaj_id><sourcerecordid>2455644157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c17dfeb71a006576093a8b814563e4f0f2e7d70dbf7824544f723390f303daae3</originalsourceid><addsrcrecordid>eNpNUUtLw0AQDqJgqf0FvQQ8p-5mnzmWUG2xRTF6XjbJrKSk2bibHPrvTUwpzmWGme8x8AXBEqMVxih5WqfpJstWMcJyFUvKWcJuglmMeRIRRvjtv_k-WHh_REPJYcXELHhPa-3b6LWpDIQHW0IdWhMeel_UEGat9l1VVN05NNaFWXXqa91VthkxHza3XbTtT7oJd00HThfj6SG4M7r2sLj0efD1vPlMt9H-7WWXrvdRQZHsogKL0kAusEaIM8FRQrTMJaaME6AGmRhEKVCZGyFjyig1IiYkQYYgUmoNZB7sJt3S6qNqXXXS7qysrtTfwrpvpd3wfA2KGIgFpgkjDFFBjESJTBjWJdNEAuWD1uOk1Tr704Pv1NH2rhneV4M345RiJgYUmVCFs947MFdXjNSYhJqSUGMS6pLEwFpOrAoArgxJZIwZIr8EjoJE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455644157</pqid></control><display><type>article</type><title>Clasp-Knife Model of Muscle Spasticity for Simulation of Robot-Human Interaction</title><source>IEEE Xplore Open Access Journals</source><creator>Mat Rosly, Hadi ; Sidek, Shahrul Naim ; Ahmad Puzi, Asmarani ; Yusoff, Hazlina Md ; Daud, Narimah ; Mat Rosly, Maziah</creator><creatorcontrib>Mat Rosly, Hadi ; Sidek, Shahrul Naim ; Ahmad Puzi, Asmarani ; Yusoff, Hazlina Md ; Daud, Narimah ; Mat Rosly, Maziah</creatorcontrib><description><![CDATA[The objective of this research was to replicate the muscle tone moment feedback of elbow upon passive mobilization and classify them based on modified ashworth scale criterion using a mathematical model. The proposed model enables the visualization of muscle tone pattern for robotic interaction simulation. A concurrent muscle tone model necessitates a jerk effect to fully replicate the catch and release effect, also known as, clasp-knife phenomenon of muscle tone feedback. However, the research of passive mobilization control interaction between robot and subject does not emulate such phenomenon. Thus, the model was improvised to replicate the clasp-knife phenomenon according to the robot's gross kinematics and dynamics. The model was designed based on the quantitative pattern of muscle tone feedback from subject with spasticity. The simulated model was then correlated to clinical measures using similar kinematic and dynamic input. The velocity dynamic input was splined to obtain the velocity trend without the jerk effect. The results obtained from the proposed model were relatively promising with an overall <inline-formula> <tex-math notation="LaTeX">(n=9\times 4) </tex-math></inline-formula> linear (Pearson) correlated average of <inline-formula> <tex-math notation="LaTeX">\bar {r}=0.8348 </tex-math></inline-formula> for nine subjects with correlation significant at the 0.01 level (<inline-formula> <tex-math notation="LaTeX">p< 0.01 </tex-math></inline-formula>) and five of them presented a distinctive clasp-knife phenomenon with correlation average of <inline-formula> <tex-math notation="LaTeX">\bar {r}=0.8631 </tex-math></inline-formula>.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2846595</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>biomedical engineering ; Correlation analysis ; Feedback ; Kinematics ; Mathematical model ; Mathematical models ; mathematics ; Modeling ; motion analysis ; Muscles ; Read only memory ; Resistance ; Robot control ; Robots ; Simulation ; Spasticity ; Training</subject><ispartof>IEEE access, 2019, Vol.7, p.1355-1364</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c17dfeb71a006576093a8b814563e4f0f2e7d70dbf7824544f723390f303daae3</citedby><cites>FETCH-LOGICAL-c408t-c17dfeb71a006576093a8b814563e4f0f2e7d70dbf7824544f723390f303daae3</cites><orcidid>0000-0001-6133-1952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8382150$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Mat Rosly, Hadi</creatorcontrib><creatorcontrib>Sidek, Shahrul Naim</creatorcontrib><creatorcontrib>Ahmad Puzi, Asmarani</creatorcontrib><creatorcontrib>Yusoff, Hazlina Md</creatorcontrib><creatorcontrib>Daud, Narimah</creatorcontrib><creatorcontrib>Mat Rosly, Maziah</creatorcontrib><title>Clasp-Knife Model of Muscle Spasticity for Simulation of Robot-Human Interaction</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[The objective of this research was to replicate the muscle tone moment feedback of elbow upon passive mobilization and classify them based on modified ashworth scale criterion using a mathematical model. The proposed model enables the visualization of muscle tone pattern for robotic interaction simulation. A concurrent muscle tone model necessitates a jerk effect to fully replicate the catch and release effect, also known as, clasp-knife phenomenon of muscle tone feedback. However, the research of passive mobilization control interaction between robot and subject does not emulate such phenomenon. Thus, the model was improvised to replicate the clasp-knife phenomenon according to the robot's gross kinematics and dynamics. The model was designed based on the quantitative pattern of muscle tone feedback from subject with spasticity. The simulated model was then correlated to clinical measures using similar kinematic and dynamic input. The velocity dynamic input was splined to obtain the velocity trend without the jerk effect. The results obtained from the proposed model were relatively promising with an overall <inline-formula> <tex-math notation="LaTeX">(n=9\times 4) </tex-math></inline-formula> linear (Pearson) correlated average of <inline-formula> <tex-math notation="LaTeX">\bar {r}=0.8348 </tex-math></inline-formula> for nine subjects with correlation significant at the 0.01 level (<inline-formula> <tex-math notation="LaTeX">p< 0.01 </tex-math></inline-formula>) and five of them presented a distinctive clasp-knife phenomenon with correlation average of <inline-formula> <tex-math notation="LaTeX">\bar {r}=0.8631 </tex-math></inline-formula>.]]></description><subject>biomedical engineering</subject><subject>Correlation analysis</subject><subject>Feedback</subject><subject>Kinematics</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>mathematics</subject><subject>Modeling</subject><subject>motion analysis</subject><subject>Muscles</subject><subject>Read only memory</subject><subject>Resistance</subject><subject>Robot control</subject><subject>Robots</subject><subject>Simulation</subject><subject>Spasticity</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtLw0AQDqJgqf0FvQQ8p-5mnzmWUG2xRTF6XjbJrKSk2bibHPrvTUwpzmWGme8x8AXBEqMVxih5WqfpJstWMcJyFUvKWcJuglmMeRIRRvjtv_k-WHh_REPJYcXELHhPa-3b6LWpDIQHW0IdWhMeel_UEGat9l1VVN05NNaFWXXqa91VthkxHza3XbTtT7oJd00HThfj6SG4M7r2sLj0efD1vPlMt9H-7WWXrvdRQZHsogKL0kAusEaIM8FRQrTMJaaME6AGmRhEKVCZGyFjyig1IiYkQYYgUmoNZB7sJt3S6qNqXXXS7qysrtTfwrpvpd3wfA2KGIgFpgkjDFFBjESJTBjWJdNEAuWD1uOk1Tr704Pv1NH2rhneV4M345RiJgYUmVCFs947MFdXjNSYhJqSUGMS6pLEwFpOrAoArgxJZIwZIr8EjoJE</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Mat Rosly, Hadi</creator><creator>Sidek, Shahrul Naim</creator><creator>Ahmad Puzi, Asmarani</creator><creator>Yusoff, Hazlina Md</creator><creator>Daud, Narimah</creator><creator>Mat Rosly, Maziah</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6133-1952</orcidid></search><sort><creationdate>2019</creationdate><title>Clasp-Knife Model of Muscle Spasticity for Simulation of Robot-Human Interaction</title><author>Mat Rosly, Hadi ; Sidek, Shahrul Naim ; Ahmad Puzi, Asmarani ; Yusoff, Hazlina Md ; Daud, Narimah ; Mat Rosly, Maziah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c17dfeb71a006576093a8b814563e4f0f2e7d70dbf7824544f723390f303daae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>biomedical engineering</topic><topic>Correlation analysis</topic><topic>Feedback</topic><topic>Kinematics</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>mathematics</topic><topic>Modeling</topic><topic>motion analysis</topic><topic>Muscles</topic><topic>Read only memory</topic><topic>Resistance</topic><topic>Robot control</topic><topic>Robots</topic><topic>Simulation</topic><topic>Spasticity</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mat Rosly, Hadi</creatorcontrib><creatorcontrib>Sidek, Shahrul Naim</creatorcontrib><creatorcontrib>Ahmad Puzi, Asmarani</creatorcontrib><creatorcontrib>Yusoff, Hazlina Md</creatorcontrib><creatorcontrib>Daud, Narimah</creatorcontrib><creatorcontrib>Mat Rosly, Maziah</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mat Rosly, Hadi</au><au>Sidek, Shahrul Naim</au><au>Ahmad Puzi, Asmarani</au><au>Yusoff, Hazlina Md</au><au>Daud, Narimah</au><au>Mat Rosly, Maziah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clasp-Knife Model of Muscle Spasticity for Simulation of Robot-Human Interaction</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>1355</spage><epage>1364</epage><pages>1355-1364</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[The objective of this research was to replicate the muscle tone moment feedback of elbow upon passive mobilization and classify them based on modified ashworth scale criterion using a mathematical model. The proposed model enables the visualization of muscle tone pattern for robotic interaction simulation. A concurrent muscle tone model necessitates a jerk effect to fully replicate the catch and release effect, also known as, clasp-knife phenomenon of muscle tone feedback. However, the research of passive mobilization control interaction between robot and subject does not emulate such phenomenon. Thus, the model was improvised to replicate the clasp-knife phenomenon according to the robot's gross kinematics and dynamics. The model was designed based on the quantitative pattern of muscle tone feedback from subject with spasticity. The simulated model was then correlated to clinical measures using similar kinematic and dynamic input. The velocity dynamic input was splined to obtain the velocity trend without the jerk effect. The results obtained from the proposed model were relatively promising with an overall <inline-formula> <tex-math notation="LaTeX">(n=9\times 4) </tex-math></inline-formula> linear (Pearson) correlated average of <inline-formula> <tex-math notation="LaTeX">\bar {r}=0.8348 </tex-math></inline-formula> for nine subjects with correlation significant at the 0.01 level (<inline-formula> <tex-math notation="LaTeX">p< 0.01 </tex-math></inline-formula>) and five of them presented a distinctive clasp-knife phenomenon with correlation average of <inline-formula> <tex-math notation="LaTeX">\bar {r}=0.8631 </tex-math></inline-formula>.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2846595</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6133-1952</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.1355-1364
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8382150
source IEEE Xplore Open Access Journals
subjects biomedical engineering
Correlation analysis
Feedback
Kinematics
Mathematical model
Mathematical models
mathematics
Modeling
motion analysis
Muscles
Read only memory
Resistance
Robot control
Robots
Simulation
Spasticity
Training
title Clasp-Knife Model of Muscle Spasticity for Simulation of Robot-Human Interaction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clasp-Knife%20Model%20of%20Muscle%20Spasticity%20for%20Simulation%20of%20Robot-Human%20Interaction&rft.jtitle=IEEE%20access&rft.au=Mat%20Rosly,%20Hadi&rft.date=2019&rft.volume=7&rft.spage=1355&rft.epage=1364&rft.pages=1355-1364&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2846595&rft_dat=%3Cproquest_ieee_%3E2455644157%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-c17dfeb71a006576093a8b814563e4f0f2e7d70dbf7824544f723390f303daae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455644157&rft_id=info:pmid/&rft_ieee_id=8382150&rfr_iscdi=true