Loading…

Non-Iterative Tone Mapping With High Efficiency and Robustness

This paper proposes an efficient approach for tone mapping, which provides a high perceptual image quality for diverse scenes. Most existing methods, optimizing images for the perceptual model, use an iterative process and this process is time consuming. To solve this problem, we proposed a new laye...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2018-01, Vol.6, p.35720-35733
Main Authors: Bae, Gyujin, Jang, Chan Young, Cho, Sung In, Kim, Young Hwan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-167efec94c54cee5b1c1b4797ad7b10d5708bf06fc7a4d314c8be02def34eedb3
cites cdi_FETCH-LOGICAL-c408t-167efec94c54cee5b1c1b4797ad7b10d5708bf06fc7a4d314c8be02def34eedb3
container_end_page 35733
container_issue
container_start_page 35720
container_title IEEE access
container_volume 6
creator Bae, Gyujin
Jang, Chan Young
Cho, Sung In
Kim, Young Hwan
description This paper proposes an efficient approach for tone mapping, which provides a high perceptual image quality for diverse scenes. Most existing methods, optimizing images for the perceptual model, use an iterative process and this process is time consuming. To solve this problem, we proposed a new layer-based non-iterative approach to finding an optimal detail layer for generating a tone-mapped image. The proposed method consists of the following three steps. First, an image is decomposed into a base layer and a detail layer to separate the illumination and detail components. Next, the base layer is globally compressed by applying the statistical naturalness model based on the statistics of the luminance and contrast in the natural scenes. The detail layer is locally optimized based on the structure fidelity measure, representing the degree of local structural detail preservation. Finally, the proposed method constructs the final tone-mapped image by combining the resultant layers. The performance evaluation reveals that the proposed method outperforms the benchmarking methods for almost all the benchmarking test images. Specifically, the proposed method improves an average tone mapping quality index-II (TMQI-II), a feature similarity index for tone-mapped images (FSITM), and a high-dynamic range-visible difference predictor (HDR-VDP)-2.2 by up to 0.651 (223.4%), 0.088 (11.5%), and 10.371 (25.2%), respectively, compared with the benchmarking methods, whereas it improves the processing speed by over 2611 times. Furthermore, the proposed method decreases the standard deviations of TMQI-II, FSITM, and HDR-VDP-2.2, and processing time by up to 81.4%, 18.9%, 12.6%, and 99.9%, respectively, when compared with the benchmarking methods.
doi_str_mv 10.1109/ACCESS.2018.2846772
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8383976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8383976</ieee_id><doaj_id>oai_doaj_org_article_f34a17e230d24ed1b2f43c2f1c6fd743</doaj_id><sourcerecordid>2455891835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-167efec94c54cee5b1c1b4797ad7b10d5708bf06fc7a4d314c8be02def34eedb3</originalsourceid><addsrcrecordid>eNpNkFtLAzEQhYMoWGp_gS8LPm_NbTfZF0GWagteQCs-hmwyqSl1syZbof_e1RVxXmY4zDkzfAidEzwnBFeX13W9eH6eU0zknEpeCkGP0ISSsspZwcrjf_MpmqW0xUPJQSrEBF09hDZf9RB17z8hW4cWsnvddb7dZK--f8uWfvOWLZzzxkNrDplubfYUmn3qW0jpDJ04vUsw--1T9HKzWNfL_O7xdlVf3-WGY9nnpBTgwFTcFNwAFA0xpOGiEtqKhmBbCCwbh0tnhOaWEW5kA5hacIwD2IZN0WrMtUFvVRf9u44HFbRXP0KIG6Vj780O1GDRRABl2FIOljTUcWaoI6Z0VnA2ZF2MWV0MH3tIvdqGfWyH9xXlRSErIgdWU8TGLRNDShHc31WC1Td3NXJX39zVL_fBdT66PAD8OSSTrBIl-wJF535A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455891835</pqid></control><display><type>article</type><title>Non-Iterative Tone Mapping With High Efficiency and Robustness</title><source>IEEE Xplore Open Access Journals</source><creator>Bae, Gyujin ; Jang, Chan Young ; Cho, Sung In ; Kim, Young Hwan</creator><creatorcontrib>Bae, Gyujin ; Jang, Chan Young ; Cho, Sung In ; Kim, Young Hwan</creatorcontrib><description>This paper proposes an efficient approach for tone mapping, which provides a high perceptual image quality for diverse scenes. Most existing methods, optimizing images for the perceptual model, use an iterative process and this process is time consuming. To solve this problem, we proposed a new layer-based non-iterative approach to finding an optimal detail layer for generating a tone-mapped image. The proposed method consists of the following three steps. First, an image is decomposed into a base layer and a detail layer to separate the illumination and detail components. Next, the base layer is globally compressed by applying the statistical naturalness model based on the statistics of the luminance and contrast in the natural scenes. The detail layer is locally optimized based on the structure fidelity measure, representing the degree of local structural detail preservation. Finally, the proposed method constructs the final tone-mapped image by combining the resultant layers. The performance evaluation reveals that the proposed method outperforms the benchmarking methods for almost all the benchmarking test images. Specifically, the proposed method improves an average tone mapping quality index-II (TMQI-II), a feature similarity index for tone-mapped images (FSITM), and a high-dynamic range-visible difference predictor (HDR-VDP)-2.2 by up to 0.651 (223.4%), 0.088 (11.5%), and 10.371 (25.2%), respectively, compared with the benchmarking methods, whereas it improves the processing speed by over 2611 times. Furthermore, the proposed method decreases the standard deviations of TMQI-II, FSITM, and HDR-VDP-2.2, and processing time by up to 81.4%, 18.9%, 12.6%, and 99.9%, respectively, when compared with the benchmarking methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2846772</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Benchmark testing ; Benchmarks ; Computational complexity ; guided filter ; high-dynamic range compression ; Image coding ; Image edge detection ; Image quality ; Indexes ; Iterative methods ; Lighting ; Luminance ; Mapping ; Methods ; Optimization ; Performance evaluation ; statistical model ; structure fidelity ; Tone mapping</subject><ispartof>IEEE access, 2018-01, Vol.6, p.35720-35733</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-167efec94c54cee5b1c1b4797ad7b10d5708bf06fc7a4d314c8be02def34eedb3</citedby><cites>FETCH-LOGICAL-c408t-167efec94c54cee5b1c1b4797ad7b10d5708bf06fc7a4d314c8be02def34eedb3</cites><orcidid>0000-0002-5532-610X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8383976$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Bae, Gyujin</creatorcontrib><creatorcontrib>Jang, Chan Young</creatorcontrib><creatorcontrib>Cho, Sung In</creatorcontrib><creatorcontrib>Kim, Young Hwan</creatorcontrib><title>Non-Iterative Tone Mapping With High Efficiency and Robustness</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper proposes an efficient approach for tone mapping, which provides a high perceptual image quality for diverse scenes. Most existing methods, optimizing images for the perceptual model, use an iterative process and this process is time consuming. To solve this problem, we proposed a new layer-based non-iterative approach to finding an optimal detail layer for generating a tone-mapped image. The proposed method consists of the following three steps. First, an image is decomposed into a base layer and a detail layer to separate the illumination and detail components. Next, the base layer is globally compressed by applying the statistical naturalness model based on the statistics of the luminance and contrast in the natural scenes. The detail layer is locally optimized based on the structure fidelity measure, representing the degree of local structural detail preservation. Finally, the proposed method constructs the final tone-mapped image by combining the resultant layers. The performance evaluation reveals that the proposed method outperforms the benchmarking methods for almost all the benchmarking test images. Specifically, the proposed method improves an average tone mapping quality index-II (TMQI-II), a feature similarity index for tone-mapped images (FSITM), and a high-dynamic range-visible difference predictor (HDR-VDP)-2.2 by up to 0.651 (223.4%), 0.088 (11.5%), and 10.371 (25.2%), respectively, compared with the benchmarking methods, whereas it improves the processing speed by over 2611 times. Furthermore, the proposed method decreases the standard deviations of TMQI-II, FSITM, and HDR-VDP-2.2, and processing time by up to 81.4%, 18.9%, 12.6%, and 99.9%, respectively, when compared with the benchmarking methods.</description><subject>Benchmark testing</subject><subject>Benchmarks</subject><subject>Computational complexity</subject><subject>guided filter</subject><subject>high-dynamic range compression</subject><subject>Image coding</subject><subject>Image edge detection</subject><subject>Image quality</subject><subject>Indexes</subject><subject>Iterative methods</subject><subject>Lighting</subject><subject>Luminance</subject><subject>Mapping</subject><subject>Methods</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>statistical model</subject><subject>structure fidelity</subject><subject>Tone mapping</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkFtLAzEQhYMoWGp_gS8LPm_NbTfZF0GWagteQCs-hmwyqSl1syZbof_e1RVxXmY4zDkzfAidEzwnBFeX13W9eH6eU0zknEpeCkGP0ISSsspZwcrjf_MpmqW0xUPJQSrEBF09hDZf9RB17z8hW4cWsnvddb7dZK--f8uWfvOWLZzzxkNrDplubfYUmn3qW0jpDJ04vUsw--1T9HKzWNfL_O7xdlVf3-WGY9nnpBTgwFTcFNwAFA0xpOGiEtqKhmBbCCwbh0tnhOaWEW5kA5hacIwD2IZN0WrMtUFvVRf9u44HFbRXP0KIG6Vj780O1GDRRABl2FIOljTUcWaoI6Z0VnA2ZF2MWV0MH3tIvdqGfWyH9xXlRSErIgdWU8TGLRNDShHc31WC1Td3NXJX39zVL_fBdT66PAD8OSSTrBIl-wJF535A</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Bae, Gyujin</creator><creator>Jang, Chan Young</creator><creator>Cho, Sung In</creator><creator>Kim, Young Hwan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5532-610X</orcidid></search><sort><creationdate>20180101</creationdate><title>Non-Iterative Tone Mapping With High Efficiency and Robustness</title><author>Bae, Gyujin ; Jang, Chan Young ; Cho, Sung In ; Kim, Young Hwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-167efec94c54cee5b1c1b4797ad7b10d5708bf06fc7a4d314c8be02def34eedb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Benchmark testing</topic><topic>Benchmarks</topic><topic>Computational complexity</topic><topic>guided filter</topic><topic>high-dynamic range compression</topic><topic>Image coding</topic><topic>Image edge detection</topic><topic>Image quality</topic><topic>Indexes</topic><topic>Iterative methods</topic><topic>Lighting</topic><topic>Luminance</topic><topic>Mapping</topic><topic>Methods</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>statistical model</topic><topic>structure fidelity</topic><topic>Tone mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bae, Gyujin</creatorcontrib><creatorcontrib>Jang, Chan Young</creatorcontrib><creatorcontrib>Cho, Sung In</creatorcontrib><creatorcontrib>Kim, Young Hwan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bae, Gyujin</au><au>Jang, Chan Young</au><au>Cho, Sung In</au><au>Kim, Young Hwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Iterative Tone Mapping With High Efficiency and Robustness</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>35720</spage><epage>35733</epage><pages>35720-35733</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper proposes an efficient approach for tone mapping, which provides a high perceptual image quality for diverse scenes. Most existing methods, optimizing images for the perceptual model, use an iterative process and this process is time consuming. To solve this problem, we proposed a new layer-based non-iterative approach to finding an optimal detail layer for generating a tone-mapped image. The proposed method consists of the following three steps. First, an image is decomposed into a base layer and a detail layer to separate the illumination and detail components. Next, the base layer is globally compressed by applying the statistical naturalness model based on the statistics of the luminance and contrast in the natural scenes. The detail layer is locally optimized based on the structure fidelity measure, representing the degree of local structural detail preservation. Finally, the proposed method constructs the final tone-mapped image by combining the resultant layers. The performance evaluation reveals that the proposed method outperforms the benchmarking methods for almost all the benchmarking test images. Specifically, the proposed method improves an average tone mapping quality index-II (TMQI-II), a feature similarity index for tone-mapped images (FSITM), and a high-dynamic range-visible difference predictor (HDR-VDP)-2.2 by up to 0.651 (223.4%), 0.088 (11.5%), and 10.371 (25.2%), respectively, compared with the benchmarking methods, whereas it improves the processing speed by over 2611 times. Furthermore, the proposed method decreases the standard deviations of TMQI-II, FSITM, and HDR-VDP-2.2, and processing time by up to 81.4%, 18.9%, 12.6%, and 99.9%, respectively, when compared with the benchmarking methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2846772</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5532-610X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018-01, Vol.6, p.35720-35733
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8383976
source IEEE Xplore Open Access Journals
subjects Benchmark testing
Benchmarks
Computational complexity
guided filter
high-dynamic range compression
Image coding
Image edge detection
Image quality
Indexes
Iterative methods
Lighting
Luminance
Mapping
Methods
Optimization
Performance evaluation
statistical model
structure fidelity
Tone mapping
title Non-Iterative Tone Mapping With High Efficiency and Robustness
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Iterative%20Tone%20Mapping%20With%20High%20Efficiency%20and%20Robustness&rft.jtitle=IEEE%20access&rft.au=Bae,%20Gyujin&rft.date=2018-01-01&rft.volume=6&rft.spage=35720&rft.epage=35733&rft.pages=35720-35733&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2846772&rft_dat=%3Cproquest_ieee_%3E2455891835%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-167efec94c54cee5b1c1b4797ad7b10d5708bf06fc7a4d314c8be02def34eedb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455891835&rft_id=info:pmid/&rft_ieee_id=8383976&rfr_iscdi=true