Loading…
A Bridgeless Electrolytic Capacitor-Free LED Driver Based on Series Resonant Converter With Constant Frequency Control
High-brightness light-emitting diode (LED) is next generation of green lighting. However, the bulky electrolytic capacitor is required to compensate the difference of pulsating power, thereby restricting the lifetime. Meanwhile, the existing drivers based on pulse frequency modulation (PFM) is bound...
Saved in:
Published in: | IEEE transactions on power electronics 2019-03, Vol.34 (3), p.2712-2725 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High-brightness light-emitting diode (LED) is next generation of green lighting. However, the bulky electrolytic capacitor is required to compensate the difference of pulsating power, thereby restricting the lifetime. Meanwhile, the existing drivers based on pulse frequency modulation (PFM) is bound to arouse heavy electromagnetic interference. In this paper, the series resonant converter based LED drive is proposed to overcome the shortcomings of electrolytic capacitor and PFM control. The proposed method is to attenuate the low frequency ripples delivered from the power factor correction (PFC) to LEDs; therefore, the capacitance is reduced for energy storage of offline LED drivers. On account of the adoption of the switching controlled capacitor (SCC), the constant frequency control is achieved by the regulations of the equivalent capacitance. Half-bridge switches are shared by the bridgeless PFC and the resonant unit, therefore, single-stage LED drive is realized with high efficiency. In addition, SCC is simultaneously shared for the upper and lower half-bridge to reduce the cost and improve the power density. Operating principle, design considerations, and performance comparisons are examined in detail. Finally, all the superior performances of proposed LED driver are verified by simulation and experimental prototypes with two-channel LEDs, and rated output power of 80 W. |
---|---|
ISSN: | 0885-8993 1941-0107 |
DOI: | 10.1109/TPEL.2018.2847701 |