Loading…

Resource Allocation in SWIPT Networks Under a Nonlinear Energy Harvesting Model: Power Efficiency, User Fairness, and Channel Nonreciprocity

This paper considers a multiuser simultaneous wireless information and power transfer system with a nonlinear energy harvesting model, in which a multiantenna base station estimates the downlink channel state information (CSI) via uplink pilots. Each single-antenna user is equipped with a power spli...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2018-09, Vol.67 (9), p.8466-8480
Main Authors: Tran, Ha-Vu, Kaddoum, Georges, Truong, Kien T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-16e017f62439f537358aeda113e0c91dd6a119f2c0c7c56c8a6b573c759fcc253
cites cdi_FETCH-LOGICAL-c291t-16e017f62439f537358aeda113e0c91dd6a119f2c0c7c56c8a6b573c759fcc253
container_end_page 8480
container_issue 9
container_start_page 8466
container_title IEEE transactions on vehicular technology
container_volume 67
creator Tran, Ha-Vu
Kaddoum, Georges
Truong, Kien T.
description This paper considers a multiuser simultaneous wireless information and power transfer system with a nonlinear energy harvesting model, in which a multiantenna base station estimates the downlink channel state information (CSI) via uplink pilots. Each single-antenna user is equipped with a power splitter. Three crucial issues on resource management for this system include: 1) power-efficient improvement, 2) user-fairness guarantee, and 3) nonideal channel reciprocity effect mitigation. Potentially, a resource allocation scheme to address jointly such issues can be devised by using the framework of multiobjective optimization. However, the resulting problem might be complex to solve since the three issues hold different characteristics. Therefore, we propose a novel method to design the resource allocation scheme. In particular, the principle of our method relies on structuralizing mathematically the issues into a cross-layer multilevel optimization problem. On this basis, we then devise solving algorithms and closed-form solutions. Moreover, to instantly adapt the CSI changes in practice while reducing computational burdens, we propose a closed-form suboptimal solution to tackle the problem. Finally, we provide numerical results to show the achievable performance gains using the optimal and suboptimal solutions, and then validate the proposed resource allocation scheme.
doi_str_mv 10.1109/TVT.2018.2848963
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8388301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8388301</ieee_id><sourcerecordid>2117169570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-16e017f62439f537358aeda113e0c91dd6a119f2c0c7c56c8a6b573c759fcc253</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvAq1szm83uxpuUVoVaRVs9LjE7W6NrUpOt0v_gjzal4mm-3nlneAg5BjYAYPJ89jQbpAzKQVpmpcz5DumB5DKRXMhd0mNxlEiRiX1yEMJbLLNMQo_8PGBwK6-RXrat06ozzlJj6ePzzf2MTrH7dv490Lmt0VNFp862xqLydGTRL9b0WvkvDJ2xC3rramwv6L37jtJR0xht0Or1GZ2H2Bgr4y2GcEaVrenwVVmL7cbPozZL77Tp1odkr1FtwKO_2Cfz8Wg2vE4md1c3w8tJolMJXQI5MiiaPM24bAQvuCgV1gqAI9MS6jqPuWxSzXShRa5Llb-IgutCyEbrVPA-Od36xrufq_h-9RYZ2HiySgEKyKUoWFSxrUp7F4LHplp686H8ugJWbZhXkXm1YV79MY8rJ9sVg4j_8pKXJWfAfwEjF34-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117169570</pqid></control><display><type>article</type><title>Resource Allocation in SWIPT Networks Under a Nonlinear Energy Harvesting Model: Power Efficiency, User Fairness, and Channel Nonreciprocity</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tran, Ha-Vu ; Kaddoum, Georges ; Truong, Kien T.</creator><creatorcontrib>Tran, Ha-Vu ; Kaddoum, Georges ; Truong, Kien T.</creatorcontrib><description>This paper considers a multiuser simultaneous wireless information and power transfer system with a nonlinear energy harvesting model, in which a multiantenna base station estimates the downlink channel state information (CSI) via uplink pilots. Each single-antenna user is equipped with a power splitter. Three crucial issues on resource management for this system include: 1) power-efficient improvement, 2) user-fairness guarantee, and 3) nonideal channel reciprocity effect mitigation. Potentially, a resource allocation scheme to address jointly such issues can be devised by using the framework of multiobjective optimization. However, the resulting problem might be complex to solve since the three issues hold different characteristics. Therefore, we propose a novel method to design the resource allocation scheme. In particular, the principle of our method relies on structuralizing mathematically the issues into a cross-layer multilevel optimization problem. On this basis, we then devise solving algorithms and closed-form solutions. Moreover, to instantly adapt the CSI changes in practice while reducing computational burdens, we propose a closed-form suboptimal solution to tackle the problem. Finally, we provide numerical results to show the achievable performance gains using the optimal and suboptimal solutions, and then validate the proposed resource allocation scheme.</description><identifier>ISSN: 0018-9545</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2018.2848963</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Channel estimation ; Closed form solutions ; Downlink ; Energy harvesting ; Exact solutions ; Mathematical models ; Multiple objective analysis ; Optimization ; Pilots ; Power efficiency ; Power splitters ; Power transfer ; Radio frequency ; Reciprocity ; Resource allocation ; Resource management ; simultaneous wireless information and power transfer ; Uplink ; Wireless communication</subject><ispartof>IEEE transactions on vehicular technology, 2018-09, Vol.67 (9), p.8466-8480</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-16e017f62439f537358aeda113e0c91dd6a119f2c0c7c56c8a6b573c759fcc253</citedby><cites>FETCH-LOGICAL-c291t-16e017f62439f537358aeda113e0c91dd6a119f2c0c7c56c8a6b573c759fcc253</cites><orcidid>0000-0002-5025-6624 ; 0000-0002-4954-2981 ; 0000-0003-2934-7924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8388301$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Tran, Ha-Vu</creatorcontrib><creatorcontrib>Kaddoum, Georges</creatorcontrib><creatorcontrib>Truong, Kien T.</creatorcontrib><title>Resource Allocation in SWIPT Networks Under a Nonlinear Energy Harvesting Model: Power Efficiency, User Fairness, and Channel Nonreciprocity</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>This paper considers a multiuser simultaneous wireless information and power transfer system with a nonlinear energy harvesting model, in which a multiantenna base station estimates the downlink channel state information (CSI) via uplink pilots. Each single-antenna user is equipped with a power splitter. Three crucial issues on resource management for this system include: 1) power-efficient improvement, 2) user-fairness guarantee, and 3) nonideal channel reciprocity effect mitigation. Potentially, a resource allocation scheme to address jointly such issues can be devised by using the framework of multiobjective optimization. However, the resulting problem might be complex to solve since the three issues hold different characteristics. Therefore, we propose a novel method to design the resource allocation scheme. In particular, the principle of our method relies on structuralizing mathematically the issues into a cross-layer multilevel optimization problem. On this basis, we then devise solving algorithms and closed-form solutions. Moreover, to instantly adapt the CSI changes in practice while reducing computational burdens, we propose a closed-form suboptimal solution to tackle the problem. Finally, we provide numerical results to show the achievable performance gains using the optimal and suboptimal solutions, and then validate the proposed resource allocation scheme.</description><subject>Channel estimation</subject><subject>Closed form solutions</subject><subject>Downlink</subject><subject>Energy harvesting</subject><subject>Exact solutions</subject><subject>Mathematical models</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Pilots</subject><subject>Power efficiency</subject><subject>Power splitters</subject><subject>Power transfer</subject><subject>Radio frequency</subject><subject>Reciprocity</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>simultaneous wireless information and power transfer</subject><subject>Uplink</subject><subject>Wireless communication</subject><issn>0018-9545</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt3wUvAq1szm83uxpuUVoVaRVs9LjE7W6NrUpOt0v_gjzal4mm-3nlneAg5BjYAYPJ89jQbpAzKQVpmpcz5DumB5DKRXMhd0mNxlEiRiX1yEMJbLLNMQo_8PGBwK6-RXrat06ozzlJj6ePzzf2MTrH7dv490Lmt0VNFp862xqLydGTRL9b0WvkvDJ2xC3rramwv6L37jtJR0xht0Or1GZ2H2Bgr4y2GcEaVrenwVVmL7cbPozZL77Tp1odkr1FtwKO_2Cfz8Wg2vE4md1c3w8tJolMJXQI5MiiaPM24bAQvuCgV1gqAI9MS6jqPuWxSzXShRa5Llb-IgutCyEbrVPA-Od36xrufq_h-9RYZ2HiySgEKyKUoWFSxrUp7F4LHplp686H8ugJWbZhXkXm1YV79MY8rJ9sVg4j_8pKXJWfAfwEjF34-</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Tran, Ha-Vu</creator><creator>Kaddoum, Georges</creator><creator>Truong, Kien T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5025-6624</orcidid><orcidid>https://orcid.org/0000-0002-4954-2981</orcidid><orcidid>https://orcid.org/0000-0003-2934-7924</orcidid></search><sort><creationdate>20180901</creationdate><title>Resource Allocation in SWIPT Networks Under a Nonlinear Energy Harvesting Model: Power Efficiency, User Fairness, and Channel Nonreciprocity</title><author>Tran, Ha-Vu ; Kaddoum, Georges ; Truong, Kien T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-16e017f62439f537358aeda113e0c91dd6a119f2c0c7c56c8a6b573c759fcc253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Channel estimation</topic><topic>Closed form solutions</topic><topic>Downlink</topic><topic>Energy harvesting</topic><topic>Exact solutions</topic><topic>Mathematical models</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Pilots</topic><topic>Power efficiency</topic><topic>Power splitters</topic><topic>Power transfer</topic><topic>Radio frequency</topic><topic>Reciprocity</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>simultaneous wireless information and power transfer</topic><topic>Uplink</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Ha-Vu</creatorcontrib><creatorcontrib>Kaddoum, Georges</creatorcontrib><creatorcontrib>Truong, Kien T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Ha-Vu</au><au>Kaddoum, Georges</au><au>Truong, Kien T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resource Allocation in SWIPT Networks Under a Nonlinear Energy Harvesting Model: Power Efficiency, User Fairness, and Channel Nonreciprocity</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>67</volume><issue>9</issue><spage>8466</spage><epage>8480</epage><pages>8466-8480</pages><issn>0018-9545</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>This paper considers a multiuser simultaneous wireless information and power transfer system with a nonlinear energy harvesting model, in which a multiantenna base station estimates the downlink channel state information (CSI) via uplink pilots. Each single-antenna user is equipped with a power splitter. Three crucial issues on resource management for this system include: 1) power-efficient improvement, 2) user-fairness guarantee, and 3) nonideal channel reciprocity effect mitigation. Potentially, a resource allocation scheme to address jointly such issues can be devised by using the framework of multiobjective optimization. However, the resulting problem might be complex to solve since the three issues hold different characteristics. Therefore, we propose a novel method to design the resource allocation scheme. In particular, the principle of our method relies on structuralizing mathematically the issues into a cross-layer multilevel optimization problem. On this basis, we then devise solving algorithms and closed-form solutions. Moreover, to instantly adapt the CSI changes in practice while reducing computational burdens, we propose a closed-form suboptimal solution to tackle the problem. Finally, we provide numerical results to show the achievable performance gains using the optimal and suboptimal solutions, and then validate the proposed resource allocation scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVT.2018.2848963</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5025-6624</orcidid><orcidid>https://orcid.org/0000-0002-4954-2981</orcidid><orcidid>https://orcid.org/0000-0003-2934-7924</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9545
ispartof IEEE transactions on vehicular technology, 2018-09, Vol.67 (9), p.8466-8480
issn 0018-9545
1939-9359
language eng
recordid cdi_ieee_primary_8388301
source IEEE Electronic Library (IEL) Journals
subjects Channel estimation
Closed form solutions
Downlink
Energy harvesting
Exact solutions
Mathematical models
Multiple objective analysis
Optimization
Pilots
Power efficiency
Power splitters
Power transfer
Radio frequency
Reciprocity
Resource allocation
Resource management
simultaneous wireless information and power transfer
Uplink
Wireless communication
title Resource Allocation in SWIPT Networks Under a Nonlinear Energy Harvesting Model: Power Efficiency, User Fairness, and Channel Nonreciprocity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A18%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resource%20Allocation%20in%20SWIPT%20Networks%20Under%20a%20Nonlinear%20Energy%20Harvesting%20Model:%20Power%20Efficiency,%20User%20Fairness,%20and%20Channel%20Nonreciprocity&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Tran,%20Ha-Vu&rft.date=2018-09-01&rft.volume=67&rft.issue=9&rft.spage=8466&rft.epage=8480&rft.pages=8466-8480&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2018.2848963&rft_dat=%3Cproquest_ieee_%3E2117169570%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-16e017f62439f537358aeda113e0c91dd6a119f2c0c7c56c8a6b573c759fcc253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117169570&rft_id=info:pmid/&rft_ieee_id=8388301&rfr_iscdi=true