Loading…

Deep Learning and Reconfigurable Platforms in the Internet of Things: Challenges and Opportunities in Algorithms and Hardware

As the Internet of Things (IoT) continues its run as one of the most popular technology buzzwords of today, the discussion really turns from how the massive data sets are collected to how value can be derived from them, i.e., how to extract knowledge out of such (big) data. IoT devices are used in a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE industrial electronics magazine 2018-06, Vol.12 (2), p.36-49
Main Authors: Fernandez Molanes, Roberto, Amarasinghe, Kasun, Rodriguez-Andina, Juan, Manic, Milos
Format: Magazinearticle
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As the Internet of Things (IoT) continues its run as one of the most popular technology buzzwords of today, the discussion really turns from how the massive data sets are collected to how value can be derived from them, i.e., how to extract knowledge out of such (big) data. IoT devices are used in an ever-growing number of application domains (see Figure 1), ranging from sports gadgets (e.g., Fitbits and Apple Watches) or more serious medical devices (e.g., pacemakers and biochips) to smart homes, cities, and self-driving cars, to predictive maintenance in missioncritical systems (e.g., in nuclear power plants or airplanes). Such applications introduce endless possibilities for better understanding, learning, and informedly acting (i.e., situational awareness and actionable information in government lingo). Although rapid expansion of devices and sensors brings terrific opportunities for taking advantage of terabytes of machine data, the mind-boggling task of understanding growth of data remains and heavily relies on artificial intelligence and machine learning [1], [2].
ISSN:1932-4529
1941-0115
DOI:10.1109/MIE.2018.2824843