Loading…
Image super-resolution reconstruction algorithm based on Bayesian theory
The Bayesian theory provides a new solution to image super-resolution reconstruction. In view of the poor robustness to noise and motion estimation in the vast majority of superresolution reconstruction algorithms. In this paper, we propose an image super-resolution reconstruction algorithm based on...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Bayesian theory provides a new solution to image super-resolution reconstruction. In view of the poor robustness to noise and motion estimation in the vast majority of superresolution reconstruction algorithms. In this paper, we propose an image super-resolution reconstruction algorithm based on Bayesian representation. In the proposed algorithm, uncharted super-resolution images, motion parameters and unknown model parameters are utilized for modeling in a hierarchical Bayesian framework. We adopt degenerate distribution to derive the estimation of analytic solutions and applied the solutions to the super-resolution reconstruction which also enables the proposed algorithm robust to noises. The experimental results show that the proposed image super-resolution reconstruction algorithm based on Bayesian representation can achieve higher (or similar) performance than the state of-the-art methods. |
---|---|
ISSN: | 2158-2297 |
DOI: | 10.1109/ICIEA.2018.8398025 |